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Water Ketchup

Quark-Gluon Plasma Ultracold atoms

Olive oil Coffee

New discoveries:
Nearly

Perfect Fluids

Hydrodynamics:
one theory to rule them all
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n 2=  n 3=  n 4=  n 5=  

Fluidity in Heavy Ions

vn provides information of the initial spatial geometry of the 
collision

Weller & Romatschke (2017)
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Fluidity in Cold Atoms

Cao et. al (2010)

Aspect ratio measures 
pressures anisotropies
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Size of the hydrodynamical gradients

Cold Atoms
Pressure 

anisotropies
are not small

O’Hara et. al. (2002) 
rT

rz

Heavy Ion Collisions
Martinez et. al.  (2012) 

Paradox: 
Hydrodynamics provides a good description 
despite large pressure anisotropies.
Introductory textbook: 
Hydrodynamics is valid as far as the system is 
near equilibrium
How does hydro emerges from a non-
equilibrium initial state?
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Far-from-equilibrium

Hydrodynamics

?
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A bit of kinetic theory
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Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t,x,p) 

Gain Lose

Particle 
imbalanceExternal ForceDiffusion
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Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t,x,p) 

Gain Lose

Particle 
imbalanceExternal ForceDiffusion



  

Observables

O(Kn  ): IS, etc2

Macroscopic quantities are simply averages , e.g.,

Ideal fluid O(Kn )0

 O(Kn): Navier-Stokes

Near to 
equilibrium 

Energy-momentum tensor of a viscous fluid



  

Asymptotics in the Boltzmann equation
Usually the distribution function is expanded as series in Kn, i.e., 

Microscopic scale
(Mean free path)

Macroscopic scale
(spatial gradients)

Expansion fails if
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Kinetic theory: Boltzmann equation
Grad’s moments method

Polynomials of 
energy

Irreducible 
moments

Irreducible 
tensors

Background 
distribution

Grad (1949), Israel-Stewart (1976), DNMR (2010)
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Kinetic theory: Boltzmann equation

Relaxation to the asymptotic state of the distribution function is 
determined by analyzing the non-linear evolution equation of the 
moments

Grad (1949), Israel-Stewart (1976), DNMR (2010)

Grad’s moments method
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Coarse-grained procedure reduces # of degrees of freedom
The slowest degrees of freedom determine hydrodynamics
However, kinetic theory is highly non-linear…..

Hydro as an coarse-grained approach
How many moments do we need? 



  

Slow invariant manifold picture
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Fokker-Planck equation
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Diffusive approximation

Landau & Lifschitz, Physical kinetics
For gluons: A. Mueller (1999)

Within the small angle approximation
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Bjorken flow expansion
Toy model: expanding system which is 
longitudinally boost invariant, Bjorken flow 
(Bjorken 1983)

Near equilibrium one can calculate the coefficients 
in the perturbative expansion  

Instead of solving the Boltzmann equation we study the 
dynamical equations of the moments 



  

By expanding the distribution function in orthogonal polynomials

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Expansion in moments for Bjorken flow

Physical observables: 



  

By expanding the distribution function in orthogonal polynomials

Martinez et. al.    2011.08235

Expansion in moments for Bjorken flow

The problem of solving the FP Eqn is mapped into solving a 
nonlinear ODEs for the Legendre moments



  

Non-autonomous Dynamical systems

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

● The evolution parameter w appears explicitly in the RHS. This is 
a non-autonomous dynamical system.

● When w does not appear explicitly the system is an autonomous 
one

● For autonomous systems the fixed points are simply dc/dw =0. 

● For non-autonomous dynamical systems the invariance under 
translations in the w parameter is broken

● For non-autonomous dynamical systems one requires to 
consider limits in the past and in the future.

● These limits are not commutative.



  

Non-autonomous Dynamical systems

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

● Any solution, aka flow, depends on its initial value, initial and final 
values of w

● Since future and past are not the same one requires to consider 
the following limits

Forward
Attractor

Pullback
Attractor



  

Basic example: flow lines in phase space

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Sink



  

Basic example: flow lines in phase space

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Source Saddle



  

UV and IR regimes

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

IR: w >> 1
Near equilibrium 
Linear response 
theory

UV: w << 1
Extremely far from 
equilibrium
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IR regime



  

IR regime: L=1 case

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

From linear response theory

Transport coefficients



  

IR regime: L=1 case

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Perturbative asymptotic 
expansion is 
divergent!!!!

Borel resummation is 
one way to sort out this 
type of situations. 

From linear response theory



  

IR regime: L=1 case

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

From linear response theory

 O (Kn): 1st. order

Large anisotropies
Kn ~ 1

 O (Kn   ): 2nd . order

-0.75

2

Far from 
equilibrium

Close to 
equilibrium
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Resurgence and transseries

 O (Kn): 1st. order
 O (Kn   ): 2nd . order2 O (Kn   ): 2nd . order2

 Ren. O (Kn   ): 2nd . order2

 Ren. O (Kn ): 1st. order

Non-perturbativeNon-perturbative

Perturbative

Transseries solutions
Costin (1998)

Asymptotic 
expansion

‘Instanton’

Martinez et. al., 
(2018, 2019)



  

O. Coustin 

If you have a non-linear differential 
equation of the form  

Then  

1. Non-resonance condition: Λ does not have null eigenvalues

 Regularity when x 2. → ∞ 
Duke Math. J. vol 93, No 2, 1998

Transseries solutions to ODEs
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How does this happen?

Linearize around the leading order term of the perturbative 
series 

Lyapunov exponent 
 

Anomalous dimension
 

Continue doing this procedure to all perturbative orders 

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235
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Transseries solutions

Perturbative IR data
 

Non-Perturbative 
Resummation of 
fluctuations around the 
IR perturbative 
expansion
 

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235
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Transport coefficients in the far from 
equilibrium regime

Each function G1,k satisfies:
 

Transport coefficient
 

For instance 
 



  

Non-newtonian fluids and rheology

Shear viscosity 
Becomes a function of the gradient 
of the flow velocity
can increase or  decrease 
depending on the size of the 
gradient of the flow velocity

This is called shear 
thinning and shear thickening 

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235



  

Non-newtonian fluids and rheology

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235



  

Non-newtonian fluids and rheology

Thus, transseries solutions resummes            
non-perturbative contributions when the 
dissipative corrections are large. As a result, 
each transport coefficient is renormalized 
 

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235
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Dynamical system as a RG flow

S. Gukov (2016) 
RG flows are dynamical systems

Is it true in the other way around? 

Sometimes a dynamical system is a RG flow. 
Under which conditions?
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Dynamical system as a RG flow

Let’s rewrite the ODEs in a precise manner

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Any observable 

RG flow equation for shear viscosity over 
entropy ratio is simply obtained by using
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Transient rheological behavior

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Shear thickening
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UV regime
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UV expansion
Let’s start by following a similar procedure by changing 
w ⇨1/z and expand when z⇨∞

Perturbative solutions
 

Linearized perturbations
 

Power law behavior

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235
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UV expansion
Let’s start by following a similar procedure by changing 
w ⇨1/z and expand when z⇨∞

Perturbative solutions
 

Linearized perturbations
 

Fast decay

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Growth
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UV expansion

Consider the expansion around saddle point

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Power law series: 
divergent 
If truncated one can extend its radius of 
convergence by analytically continuing!!
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UV expansion

Consider the expansion around saddle point

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235
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UV expansion

Consider the expansion around source point

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235

Perturbative Power law decay
No Instantons
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Universal properties
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Universal features of attractors

Late-time 
hydrodynamical 
behaviorEarly-time free-streaming

Martinez et. al.    1805.07881, 1901.08632, 1911.06406, 2011.08235



  

Conclusions 

1. UV and IR expansions present different behavior for 
the Bjorken flow
  
2. IR solutions are written as a multiparameter 
transseries
Transport coefficients get effectively renormalized after 
resumming non-perturbative instanton-like 
contributions 

3. UV expansions present power law solutions with a 
finite radius of convergence

4. Early and late time behavior are determined by free 
streaming and viscous hydrodynamics respectively.



  

Dynamical systems

ResurgenceRG flows



  

Excellent group of collaborators

     A  Behtash        C  N  Camacho        S  Kamata               H  Shi. . . . .

     J  Jankowski.            T  Schaefer                 V  Skokov         M  Spalinski. . .



  

Outlook

Resurgence analysis of other relevant systems

1. Jet quenching
2. Cosmology
3. Cold atoms

Challenges:
1. How to generalize to arbitrarily expanding 
geometries? 
2. Phase transitions?
3. Effective action (Lyapunov functionals)
For Gubser flow: Behtash. et. al. PRD 97 044041 (2018) 



  

Backup slides



  

Asymptotics in the Boltzmann equation

O(Kn  ): IS, etc2

Usually the distribution function is expanded as series in Kn, i.e., 

Macroscopic quantities are simply averages , e.g.,

Ideal fluid O(Kn )0

 O(Kn): Navier-Stokes



  

Asymptotics in the Boltzmann equation
Usually the distribution function is expanded as series in Kn, i.e., 

Microscopic scale
(Mean free path)

Macroscopic scale
(spatial gradients)

Expansion fails if
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