Transasymptotics, dynamical
systems and far from equilibrium
hydrodynamics

Mauricio Martinez Guerrero

Seminar Holographic group
University of Ljubljana

QT
\@ L]
COLLABORAnON NC STATE UNIVERSITY




Hydrodynamics:
one theory to rule them all
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New discoveries:
Nearly
Perfect Fluids




Fluidity in Heavy lons

superSONIC for Pb+Pb, Vs=5.02 TeV, 0-5%
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Fluidity in Cold Atoms

pressures anisotropies
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Size of the hydrodynamical gradients

Heavy lon Collisions Cold Atoms
Martinez et. al. (2012) Pressure

Pl_/PT at t=2.50fm/c

: anisotropies
/are not small
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Paradox:
Hydrodynamics provides a good description
despite large pressure anisotropies.
Introductory textbook:
Hydrodynamics is valid as far as the system is
near equilibrium ;—g

How does hydro emerges from a non- :
equilibrium initial state?



Far-from-equilibrium

Hydrodynamics




A bit of kinetic theory
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Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t,x,p)
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Observables

Macroscopic quantities are simply averages , e.g.,

T = /p“p”f(w“,p)
| &

@)

Near to p —y L
equilibrium = Z(Kn) T Kn = L
k=0
Energy-momentum tensor of a viscous fluid
15" = (e+ple)) u'u” + p(e)g"” - Ideal fluid O(Kr)

T = —not¥ = O(Kn): Navier-Stokes

T = O(Kn®): 1S, etc



Asymptotics in the Boltzmann equation
Usually the distribution function is expanded as series in Kn, i.e.,
> [
f(at,p) =D (Kn)* fi(a",p) Kn = -

k=0

Microscopic scale 1 ~ \,.zp
(Mean free path)

Macroscopic scale 1 5

(spatial gradients) L

Expansion falls if

/
R N—Nl
T

High-altitude flights



Kinetic theory: Boltzmann equation

Grad’'s moments method

of df . Of
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Background Polynomials of  [rreducible Irreducible
distribution energy moments tensors

12
Grad (1949), Israel-Stewart (1976), DNMR (2010)



Kinetic theory: Boltzmann equation

Grad’'s moments method

o Nl
f(@",p) = fo (1 T >4 >1 Hi), P2 Dy 'pm>>
[=0 n=0

Relaxation to the asymptotic state of the distribution function is
determined by analyzing the non-linear evolution equation of the
moments

[

Grad (1949), Israel-Stewart (1976), DNMR (2010)
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Hydro as an coarse-grained approach

How many moments do we need?
@) Nl

NN\ 4]
Fatp)=fo 14D > Hynfh™ " Py Py
[=0 n=0

» Coarse-grained procedure reduces # of degrees of freedom
» The slowest degrees of freedom determine hydrodynamics
» However, kinetic theory is highly non-linear.....

Microscopic: . i
b Mesoscopic: Continuum: 14
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Slow Iinvariant manifold picture

Phase space
trajectory Fast modes

N //

Phase space
trajectory

1-D manifold

Slow modes

—— \
2-D manifold

. 0-D manifold
(i.e. equilibrium point)



Fokker-Planck equation
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Diffusive approximation
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Landau & Lifschitz, Physical kinetics
For gluons: A. Mueller (1999)
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Bjorken flow expansion

Toy model: expanding system which is
longitudinally boost invariant, Bjorken flow
(Bjorken 1983)

Near equilibrium one can calculate the coefficients
In the perturbative expansion

v v k
T = TE [Kn]
k=0

—»

1 1
Kn =

L~ 71— It w

Instead of solving the Boltzmann equation we study the
dynamical equations of the moments
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Expansion in moments for Bjorken flow

Orf(1,pr,D2) = Cairr.|f]

By expanding the distribution function in orthogonal polynomials

@)

f(@,p) = feq. (Ep/T(T)) Z ¢i(7) Pai(cos bp)

[=0

Physical observables:

TMV:/p,LLpr(mM’p)E dlag (€7PT7PT7PL)
| &
1 ¢ 1 2
~T*  Pr=e¢|l=—-—= Pr=¢| =+ —
- g 6(3 15) L 6<3+1501>

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Expansion in moments for Bjorken flow

Orf(1,pr,D2) = Cairr.|f]

By expanding the distribution function in orthogonal polynomials

@)

f(@,P) = feq. (Ep/T(7T)) ci(7) Pai(cos bp)

The problem of solving the FP Egn is mapped into solving a
nonlinear ODEs for the Legendre moments

1
K ~ —
dc H w0

1
Tr
b v/
dw (e, w),

F(c,w) = !

1 — %cl(w)

+{A+D(c) + 3(c)fc(w)].

~ {x(c)e(w) + T}

Martinez et. al. 2011.08235



Non-autonomous Dynamical systems

d
2% _ 5
dw

(c,

w

)

* The evolution parameter w appears explicitly in the RHS. This is

a non-autonomous dynamical system.

 When w does not appear explicitly the system is an autonomous

one

* For autonomous systems the fixed points are simply dc/dw =0.

* For non-autonomous dynamical systems the invariance under
translations in the w parameter is broken

* For non-autonomous dynamical systems one requires to
consider limits in the past and in the future.

e These limits are not commutative.

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Non-autonomous Dynamical systems

d
ﬁ = F(c,w)

* Any solution, aka flow, depends on its initial value, initial and final
values of w

c = c(cy, w, W)

e Since future and past are not the same one requires to consider
the following limits

w%oolﬂ)lfixed (o, w, o) wo—>(1)i,'rwnfixed ¢(Co, w, o)
Forward Pullback
Attractor Attractor

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Basic example: flow lines in phase space
dc

= F(c,w)

lim 61(6170,11),11]0) =0
w—o0,wq fixed
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8:
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4
5 2
0
-2 Sink
-4 -

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Basic example: flow lines in phase space

dc .
— = F(c,w) lim  c(cg,w,wq)
dw wo—0,w fixed
sSource Saddle
0.000 O. 06 0.08 0.10
8.0 g > 1.0
E 1215
7.5- ;
; .20
° 70 1-25
: =30
2 ; " -35
0.000 10

W \W
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UV and IR regimes

d
ﬁ — ]'__"‘((__:j w)
IR: w>>1 UV: w<<1
» Near equilibrium » Extremely far from
Linear response equilibrium

theory

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



IR regime

26



IR regime: L=1 case

From linear response theory

R 0) _
" Fi(w,cq) Clzzug,iw k

Transport coefficients

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235
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IR regime: L=1 case

From linear response theory

dCl OO
— = Fi(w,c (0) —k
dw 1w, er) C1 = E :“1,/4“’
k=0
15F- .
Mmoo 0 X k! Perturbative asymptotic
: expansion is
O divergent!!!!
N L
§ : Borel resummation is
F one way to sort out this
: type of situations.
0:_| ......... T T T T |
0 20 40 60 80 100
k
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IR regime: L=1 case

From linear response theory

dcq >
— = Fi(w, ¢y 0) . —k
dw (w;e1) €1 = E : Uy W
Y
k=0
5-
C Far from
1 4 equilibrium et
3\ e O (Kn): 1. order
- —— O (Kn?): 2" . order
2
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Resurgence and transseries

Asymptotic Transseries solutions
expansion - Costin (1998)

o0 0 o l
. —S/K k
c1 = E ar, [Kn]” m— = Z a + Z U, (0 e/ [Kn]ﬁ) [Kn]
k=1 k=1 =1
C 5 ‘Instanton’
1 4 ] Exact
- Non-perturbative L 0 (Kn): 1%, order
3— ! ——= 0 (Kn?): 2" . order
- = == Ren. O (Kn): 1%, order
2:* ——= Ren. O (Kn?): 2" . order
=
0 —
—1; | \
B |
2. | Perturbative
- |
_3; | | | ! | | | | | | | |
10° 4 10!
Martinez et. al., w=7T(r) € Kn] 30

(2018, 2019)



Transseries solutions to ODEs

If you have a non-linear differential
equation of the form

1. Non-resonance condition: A does not have null eigenvalues

2. Regularity when x — oo
Duke Math. J. vol 93, No 2, 1998



How does this happen?

Linearize around the leading order term of the perturbative
series

d561 8F1

= —— )
dw Jcq “l

C1=Cq

561 0'16

[

Lyapunov exponent Anomalous dimension

w

Continue doing this procedure to all perturbative orders

32
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Transseries solutions

er(w) = [uflg o1 G(w) + uff [or Gw)? + -]
1
+— ) + ufl o Gi(w) +uf o ) + -]
+ =5 [0l + ulor aw) + w3 for @) + ]

/ N\

Non-Perturbative
Resummation of
fluctuations around the
IR perturbative
expansion

Perturbative IR data

33
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Transport coefficients in the far from
equilibrium regime

Each function Gik satisfies:

lim Gy = ugoll — Transport coefficient

w—r 00

. 3 .
For instance g — 10 wlgnoo G11(o1C(w))

= M) = 2 Grklor(w) :



Non-newtonian fluids and rheology

— )
-

> M

Ty ™ 11040 Ty~ 10,) Oy

This is called shear > Shear viscosity
thinning and shear thu:kenmg » Becomes a function of the gradient

of the flow velocity

» can increase or decrease
depending on the size of the
gradient of the flow velocity

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Non-newtonian fluids and rheology

'
>~ —» v
-
> e =
= M
Equilibrium Shear thinning Shear thickening

%99 RO TRPFOP _
®o

—

- = - -l

Increasingshear rate

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Non-newtonian fluids and rheology

— )
-
> M

3

g(w) =1 G1k(o1¢(w))

Thus, transseries solutions resummes
non-perturbative contributions when the
dissipative corrections are large. As a result,
each transport coefficient is renormalized

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Dynamical system as a RG flow

S. Gukov (2016)
RG flows are dynamical systems

G

Is it true in the other way around? =V

Sometimes a dynamical system is a RG flow.
» Under which conditions?

38



Dynamical system as a RG flow

Let’s rewrite the ODESs in a precise manner

Any observable O = 9O(G1 x(01(1))

0L
0G i

dD(G1,k(01C1

Jlog © Z [ (b1 + S1w) ClGl k((ﬁCl)}

k=0

RG flow equation for shear viscosity over
entropy ratio is simply obtained by using

g(w) — —%G1 k(o1¢(w))

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235
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Transient rheological behavior

1.0— -
0'8__ — 0 =3.1
2 0 . =054
0.6 - 0=1.31
x [
E [
0.4
0.2
0.0 o .0|6. .

Shear thickening

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



UV regime

41



UV expansion

Let’s start by following a similar procedure by changing
w =1/z and expand when z=o0

dCl
— Fl(cla Z)
dz
U1k
Perturbative solutions ci(z)= ) ok
k=1
. . . 5 + _ | £ ozli
Linearized perturbations Cq (Z) = U7 =

e

Power law behavior

42
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UV expansion

Let’s start by following a similar procedure by changing
w =1/z and expand when z=o0

dCl
— Fl(cla )
dz
U1k
Perturbative solutions ci(z)= ) ok
k=1
6 :I: al
Linearized perturbations 01

\

Fast decay Growth

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235
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UV expansion

Consider the expansion around saddle point

Martinez et. al.

00 o1
1,
a(z)=) —

k=1

Power law series:

divergent
If truncated one can extend Iits radius of

convergence by analytically continuing!!

1805.07881, 1901.08632, 1911.06406, 2011.08235
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UV expansion

Consider the expansion around saddle point

Martinez et.

al.

U1k

Lk — Exact L=1
- Wy=0

-- wy=0.28

W,=0.54

— w3=1.03

e e e e i

pd  [—

1805.07881, 1901.08632, 1911.06406, 2011.08235
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UV expansion

Consider the expansion around source point

op =27 e, &l2) = 2

2

Power law decay
No Instantons

Perturbative

46
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Universal properties

47



Universal features of attractors
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— AMY-
— FP Bc

YM kinetics, C,, = 0.98

ltzmann, C,, = 0.91

I

Early-time free-streaming

Martinez et. al.

1805.07881, 1901.08632, 1911.06406, 2011.08235

— - RTA Boltzmann, C_,, = 0.89
: 1st. Order Hydro
_ - Free streaming »
— I I | | ] ] I — !:x}‘:::::::!:
0.1 0.3 0.5 1.0, 4.0 . 9.0
w=7T/(4nn/s) 4= Kn] " /(47mn/s)
Late-time
hydrodynamical
behavior
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Conclusions

1. UV and IR expansions present different behavior for
the Bjorken flow

2. IR solutions are written as a multiparameter

transseries
» Transport coefficients get effectively renormalized after

resumming non-perturbative instanton-like
contributions

3. UV expansions present power law solutions with a
finite radius of convergence

4. Early and late time behavior are determined by free
streaming and viscous hydrodynamics respectively.



Dynamical systems

RG flows Resurgence



Excellent group of collaborators

C. N. Camacho S. Kamata

J. Jankowsk: T. Schae fer V. Skokov M. Spalinski



Outlook

» Resurgence analysis of other relevant systems

1. Jet quenching
2. Cosmology
3. Cold atoms

» Challenges:
1. How to generalize to arbitrarily expanding
geometries?
2. Phase transitions?
3. Effective action (Lyapunov functionals)
For Gubser flow: Behtash. et. al. PRD 97 044041 (2018)
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Asymptotics Iin the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

= [

f(a#,p) =Y (Kn)* fi(a",p) Kn =+
k=0
Macroscopic quantities are simply averages , e.g.,
T = /p“p”f(af“,p) —) T =) (Kn)'T)
P k=0
15" = (e+ple)) u'u” + p(e)g"” - Ideal fluid O(Kr)

Tf“/ = —not” = O(Kn): Navier-Stokes

T = O(Kn®): 1S, etc



Asymptotics in the Boltzmann equation
Usually the distribution function is expanded as series in Kn, i.e.,
> [
f(at,p) =D (Kn)* fi(a",p) Kn = -

k=0

Microscopic scale 1 ~ \,.zp
(Mean free path)

Macroscopic scale 1 5

(spatial gradients) L

Expansion falls if

/
R N—Nl
T

High-altitude flights
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