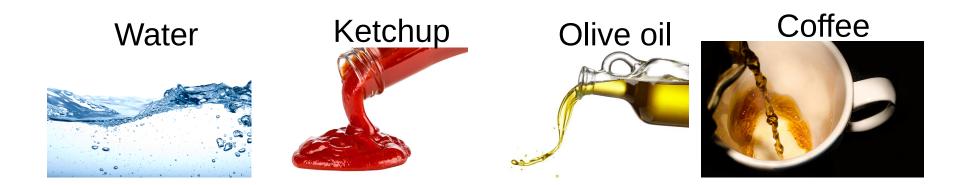
Transasymptotics, dynamical systems and far from equilibrium hydrodynamics

Mauricio Martinez Guerrero

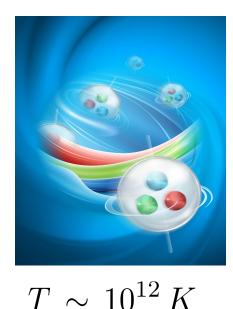
Seminar Holographic group University of Ljubljana

NC STATE UNIVERSITY

Hydrodynamics: one theory to rule them all



Quark-Gluon Plasma



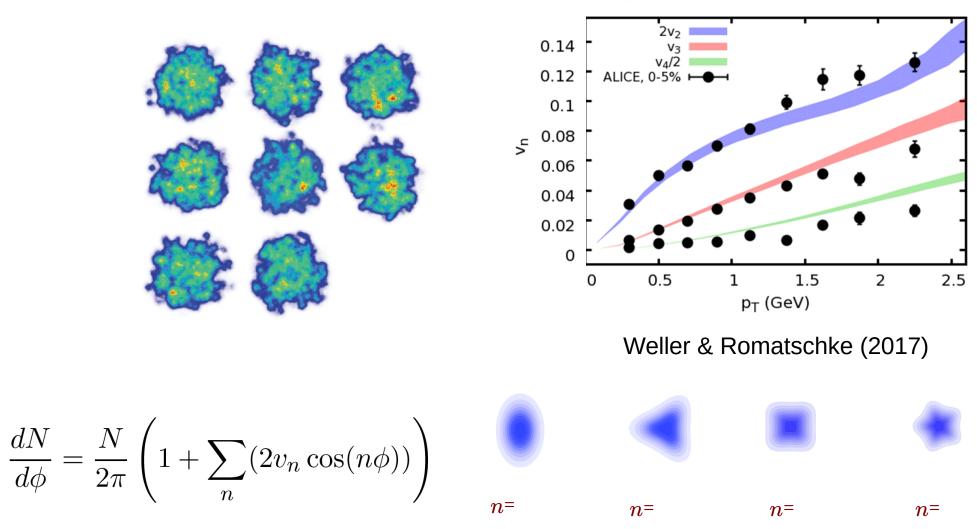
New discoveries: Nearly Perfect Fluids

Ultracold atoms

 $T \sim 10^{-7} K$

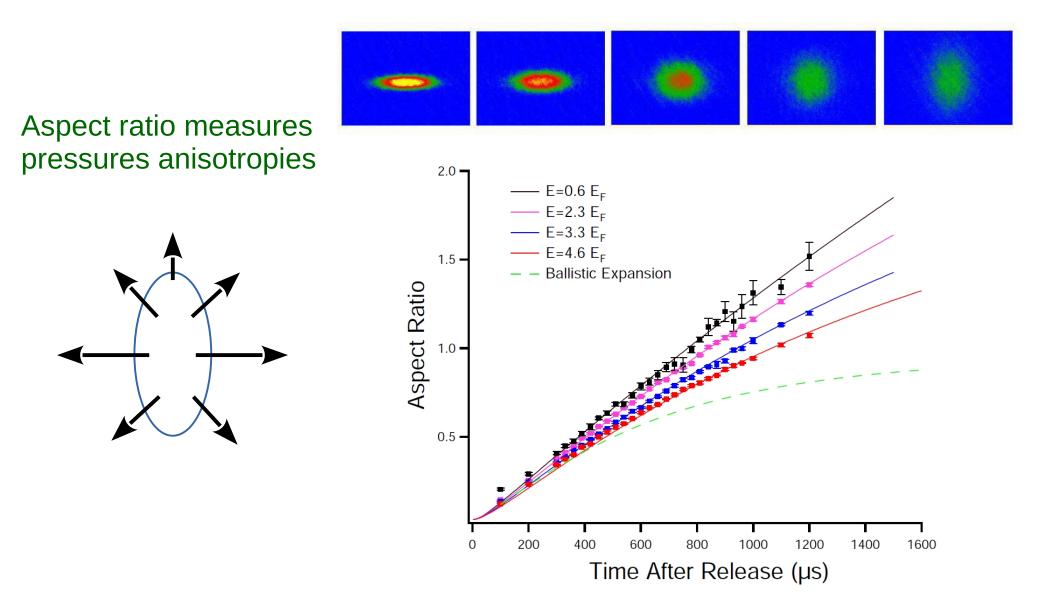
Fluidity in Heavy Ions

superSONIC for Pb+Pb, \sqrt{s} =5.02 TeV, 0-5%



 v_{n} provides information of the initial spatial geometry of the collision

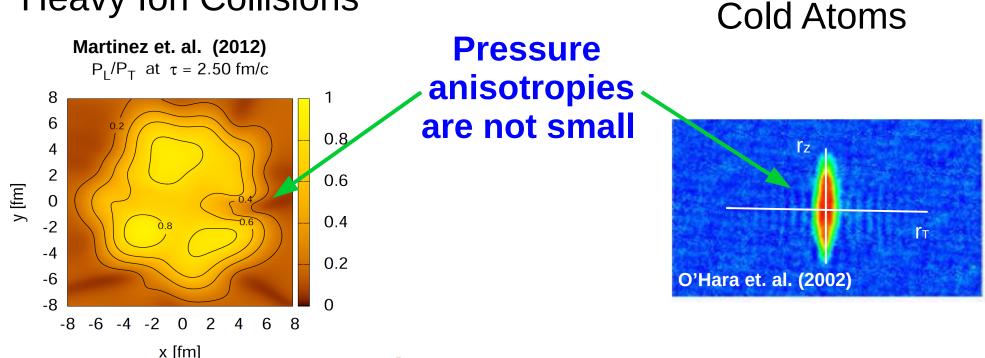
Fluidity in Cold Atoms



Cao et. al (2010)

Size of the hydrodynamical gradients

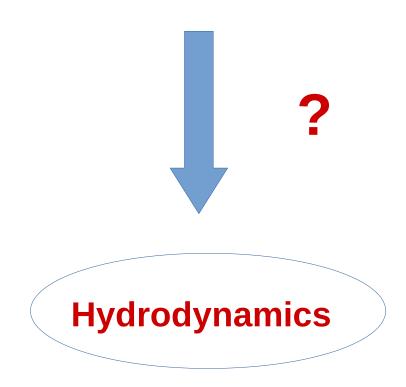
Heavy Ion Collisions



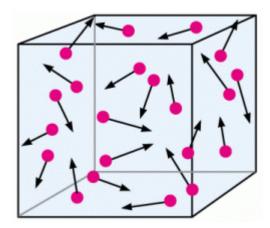
Paradox:

Hydrodynamics provides a good description despite large pressure anisotropies. Introductory textbook: Hydrodynamics is valid as far as the system is near equilibrium How does hydro emerges from a nonequilibrium initial state?

Far-from-equilibrium

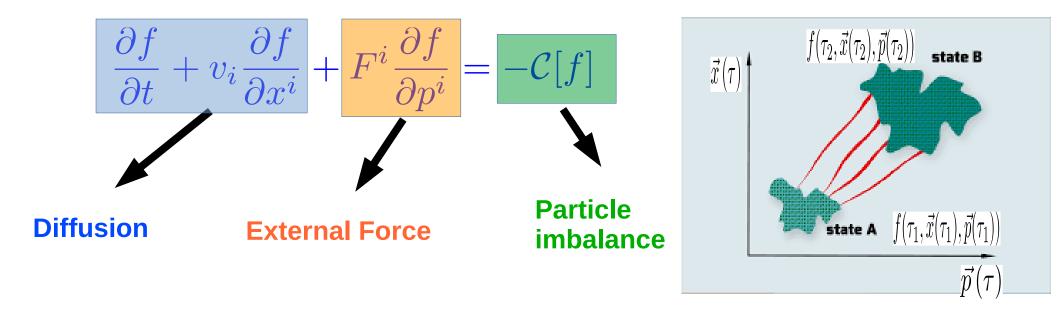


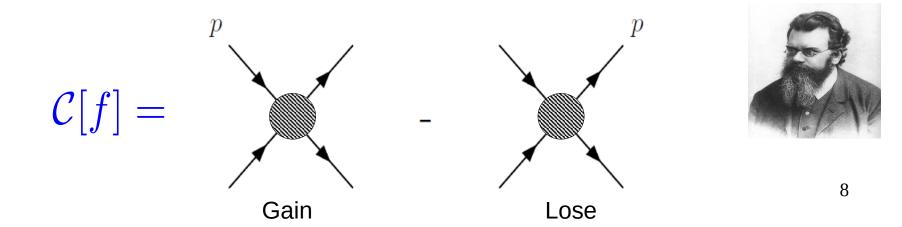
A bit of kinetic theory



Boltzmann equation

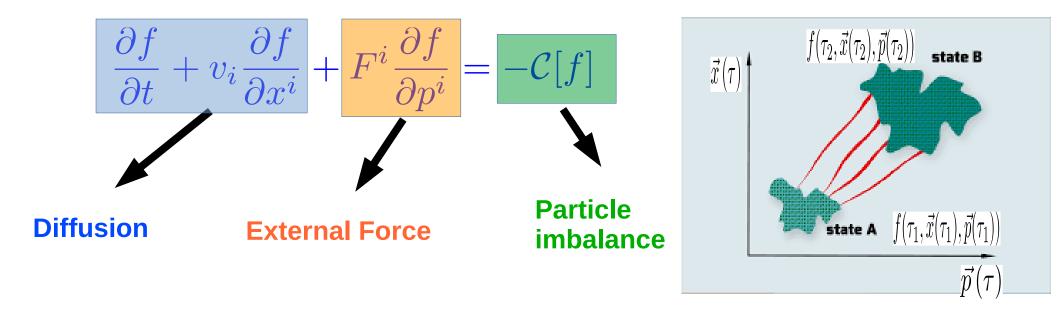
Microscopic dynamics is encoded in the distribution function f(t,**x**,**p**)

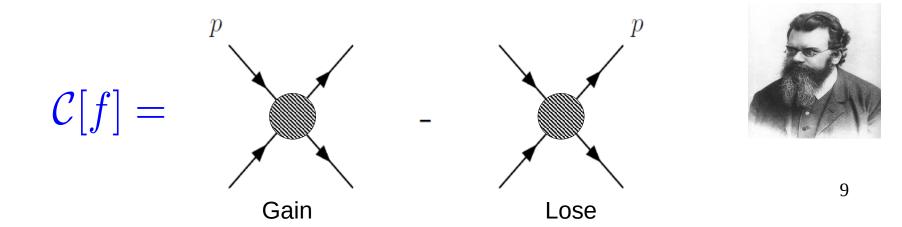




Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t,**x**,**p**)





Observables

Macroscopic quantities are simply averages , e.g.,

$$T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f(x^{\mu}, \mathbf{p})$$

Near to
equilibrium
$$T^{\mu\nu} = \sum_{k=0}^{\infty} (Kn)^{k} T_{k}^{\mu\nu} \qquad Kn \equiv \frac{l}{L}$$

Energy-momentum tensor of a viscous fluid

$$T_0^{\mu\nu} = (\epsilon + p(\epsilon)) u^{\mu} u^{\nu} + p(\epsilon) g^{\mu\nu} \longrightarrow \text{ Ideal fluid } \mathcal{O}(\text{Kn}^0)$$

$$T_1^{\mu
u} = -\eta \, \sigma^{\mu
u} \longrightarrow \mathcal{O}(\text{Kn})$$
: Navier-Stokes
 $T_2^{\mu
u} \longrightarrow \mathcal{O}(\text{Kn}^2)$: IS, etc

Asymptotics in the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

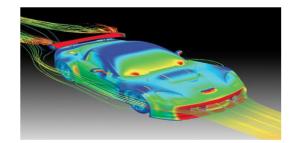
$$f(x^{\mu}, p) = \sum_{k=0}^{\infty} (Kn)^k f_k(x^{\mu}, p)$$

Macroscopic scale (spatial gradients)

$$l \sim \lambda_{mfp}$$

$$\frac{1}{L} \sim \partial_i v^i$$

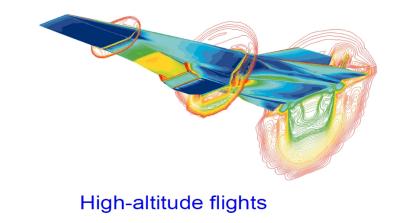
$$Kn \equiv \frac{l}{L}$$



 $L \sim 1\,m \qquad \ell \sim 10^{-7}\,m$

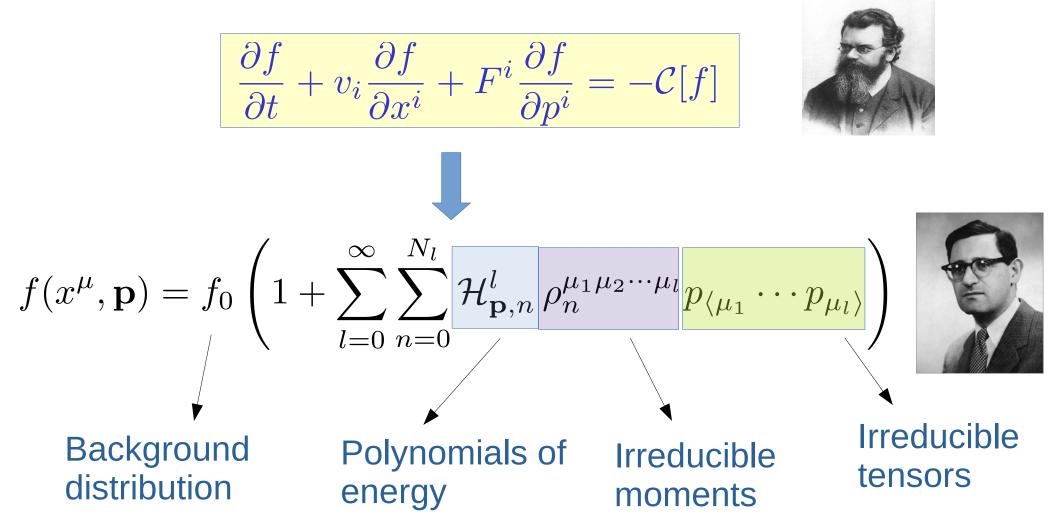
Expansion fails if

$$Kn \sim \frac{l}{L} \sim 1$$





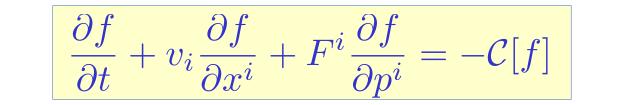
Kinetic theory: Boltzmann equation



Grad (1949), Israel-Stewart (1976), DNMR (2010)

Kinetic theory: Boltzmann equation

Grad's moments method



$$f(x^{\mu}, \mathbf{p}) = f_0 \left(1 + \sum_{l=0}^{\infty} \sum_{n=0}^{N_l} \mathcal{H}^l_{\mathbf{p}, n} \rho_n^{\mu_1 \mu_2 \cdots \mu_l} p_{\langle \mu_1} \cdots p_{\mu_l \rangle} \right)$$

Relaxation to the asymptotic state of the distribution function is determined by analyzing the non-linear evolution equation of the moments

$$\frac{d\rho_r^{\mu_1\mu_2\cdots\mu_l}}{dt} \sim \frac{d}{dt} \left[\int_{\mathbf{p}} E_{\mathbf{p}}^r p^{\langle \mu_1} \cdots p^{\mu_l \rangle} \delta f \right]$$

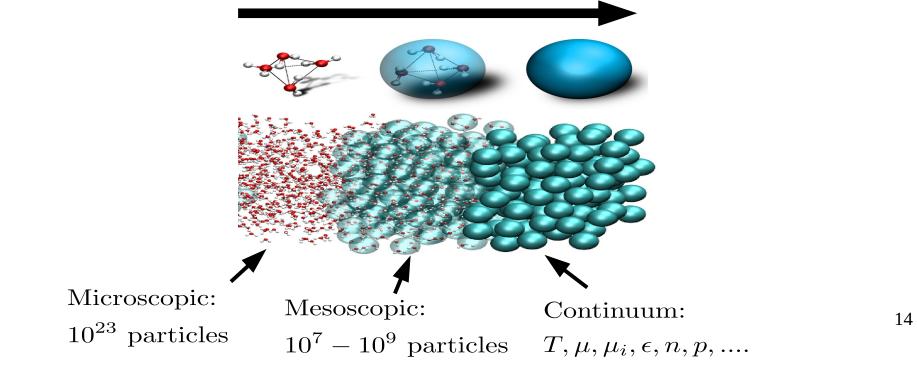
Grad (1949), Israel-Stewart (1976), DNMR (2010)

Hydro as an coarse-grained approach

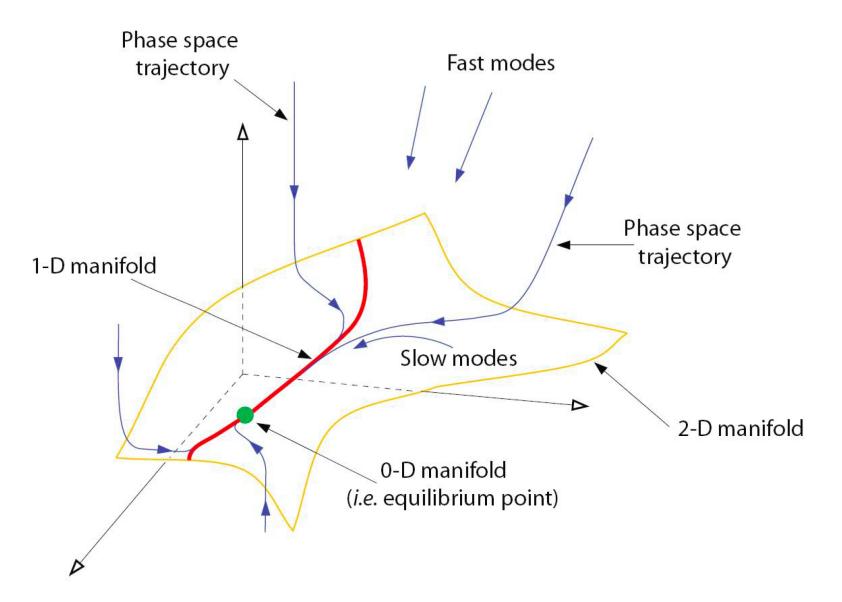
How many moments do we need?

$$f(x^{\mu}, \mathbf{p}) = f_0 \left(1 + \sum_{l=0}^{\infty} \sum_{n=0}^{N_l} \mathcal{H}^l_{\mathbf{p}, n} \rho_n^{\mu_1 \mu_2 \cdots \mu_l} p_{\langle \mu_1} \cdots p_{\mu_l \rangle} \right)$$

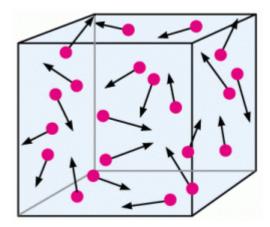
Coarse-grained procedure reduces # of degrees of freedom
 The slowest degrees of freedom determine hydrodynamics
 However, kinetic theory is highly non-linear.....



Slow invariant manifold picture

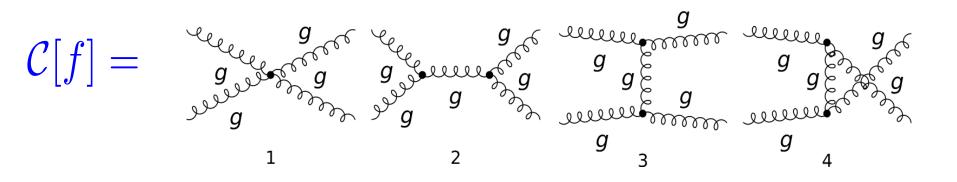


Fokker-Planck equation

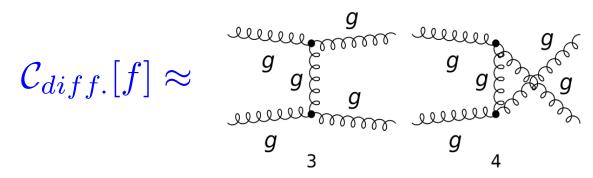


Diffusive approximation

$$\frac{\partial f}{\partial t} + v_i \frac{\partial f}{\partial x^i} = -\mathcal{C}[f]$$



Within the small angle approximation

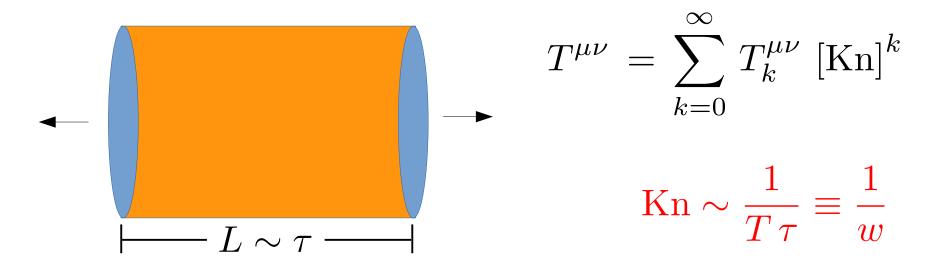


Landau & Lifschitz, Physical kinetics For gluons: A. Mueller (1999)

Bjorken flow expansion

Toy model: expanding system which is longitudinally boost invariant, **Bjorken flow** (Bjorken 1983)

Near equilibrium one can calculate the coefficients in the perturbative expansion



Instead of solving the Boltzmann equation we study the dynamical equations of the moments

Expansion in moments for Bjorken flow

$$\partial_{\tau} f(\tau, p_T, p_z) = \mathcal{C}_{diff.}[f]$$

By expanding the distribution function in orthogonal polynomials

$$f(x, \mathbf{p}) = f_{eq.} \left(E_{\mathbf{p}} / T(\tau) \right) \sum_{l=0}^{\infty} c_l(\tau) \mathcal{P}_{2l}(\cos \theta_{\mathbf{p}})$$

Physical observables:

$$T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f(x^{\mu}, \mathbf{p}) \equiv \text{diag.} (\epsilon, P_T, P_T, P_L)$$

$$\epsilon \sim T^4 \qquad P_T = \epsilon \left(\frac{1}{3} - \frac{c_1}{15}\right) \qquad P_L = \epsilon \left(\frac{1}{3} + \frac{2}{15}c_1\right)$$

Expansion in moments for Bjorken flow

$$\partial_{\tau} f(\tau, p_T, p_z) = \mathcal{C}_{diff.}[f]$$

By expanding the distribution function in orthogonal polynomials

$$f(x, \mathbf{p}) = f_{eq.} \left(E_{\mathbf{p}} / T(\tau) \right) \sum_{l=0}^{\infty} c_l(\tau) \mathcal{P}_{2l}(\cos \theta_{\mathbf{p}})$$

The problem of solving the FP Eqn is mapped into solving a nonlinear ODEs for the Legendre moments

$$\begin{aligned} \frac{d\mathbf{c}}{dw} &= \mathbf{F}(\mathbf{c}, w), \\ \mathbf{F}(\mathbf{c}, w) &= -\frac{1}{1 - \frac{1}{20}c_1(w)} \left[\frac{1}{w} \left\{ \mathfrak{X}(\mathbf{c})\mathbf{c}(w) + \mathbf{\Gamma} \right\} \right. \\ &+ \left\{ \Lambda + \mathfrak{Y}(\mathbf{c}) + \mathfrak{Z}(\mathbf{c}) \right\} \mathbf{c}(w) \right]. \end{aligned}$$

1

Martinez et. al. 2011.08235

Non-autonomous Dynamical systems

$$\frac{d\mathbf{c}}{dw} = \mathbf{F}(\mathbf{c}, \mathbf{w})$$

- The evolution parameter w appears explicitly in the RHS. This is a non-autonomous dynamical system.
- When w does not appear explicitly the system is an autonomous one
- For autonomous systems the fixed points are simply dc/dw =0.
- For non-autonomous dynamical systems the invariance under translations in the w parameter is broken
- For non-autonomous dynamical systems one requires to consider limits in the past and in the future.
- These limits are not commutative.

Non-autonomous Dynamical systems

$$\frac{d\mathbf{c}}{dw} = \mathbf{F}(\mathbf{c}, \boldsymbol{w})$$

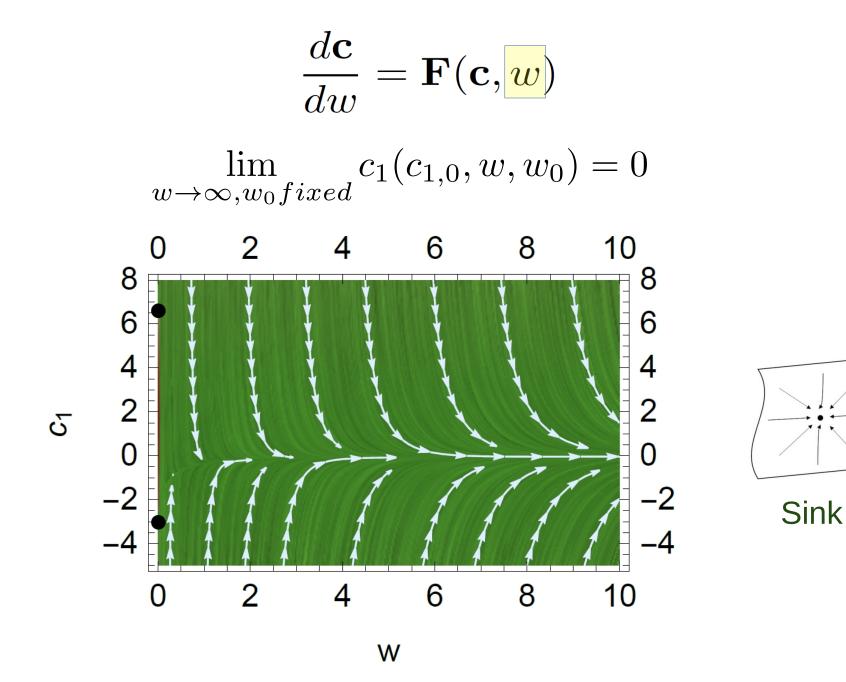
 Any solution, aka flow, depends on its initial value, initial and final values of w

$$\mathbf{c} \equiv \mathbf{c}(\mathbf{c}_0, w, w_0)$$

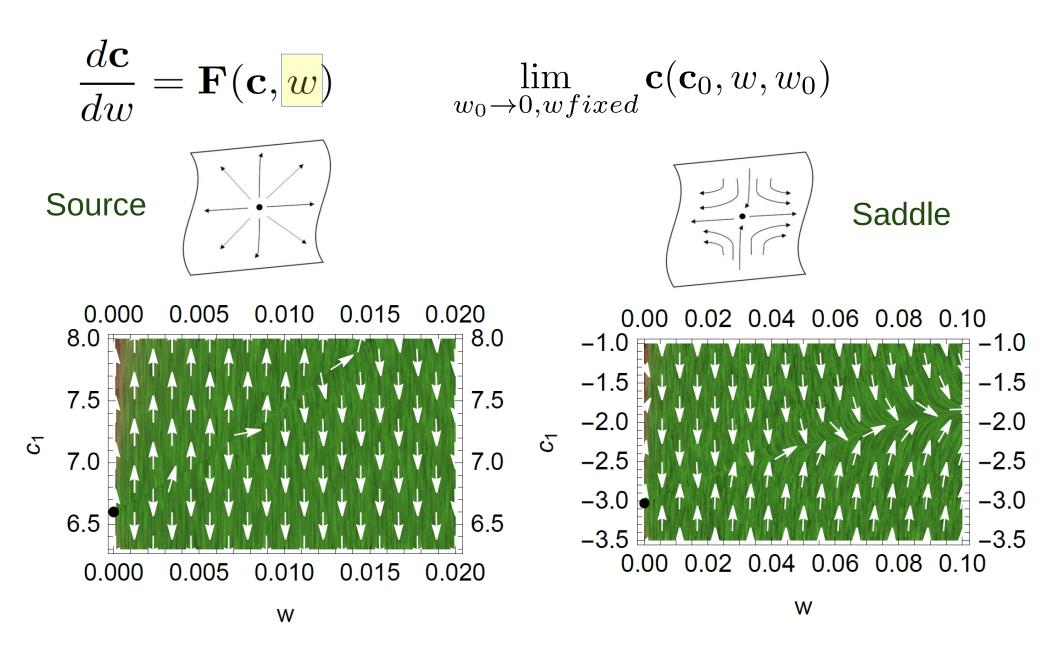
• Since future and past are not the same one requires to consider the following limits

$$\lim_{w \to \infty, w_0 fixed} \mathbf{c}(\mathbf{c}_0, w, w_0) \qquad \lim_{w_0 \to 0, w fixed} \mathbf{c}(\mathbf{c}_0, w, w_0)$$
Forward Attractor Pullback Attractor

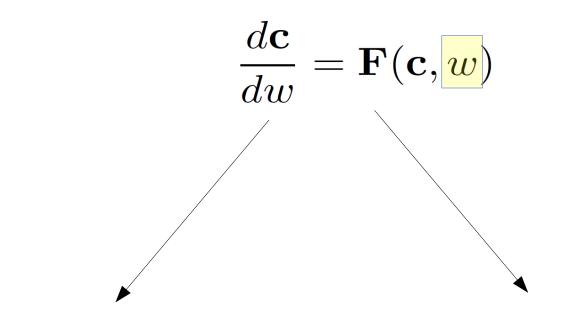
Basic example: flow lines in phase space



Basic example: flow lines in phase space



UV and IR regimes



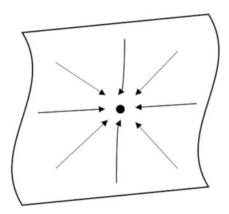
IR: w >> 1

 Near equilibrium Linear response theory

UV: w << 1

Extremely far from equilibrium

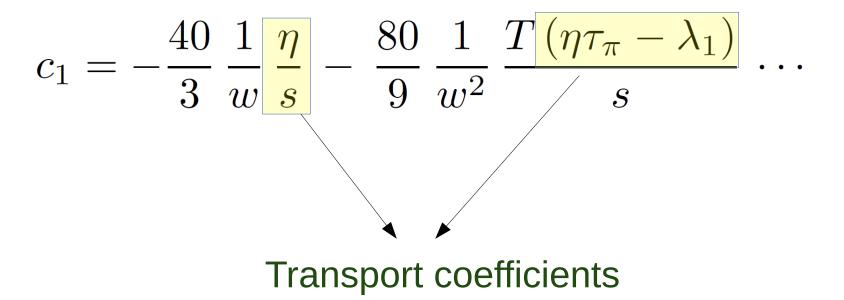
IR regime



IR regime: L=1 case

$$\frac{dc_1}{dw} = F_1(w, c_1) \qquad c_1 = \sum_{k=0}^{\infty} u_{1,k}^{(0)} w^{-k}$$

From linear response theory

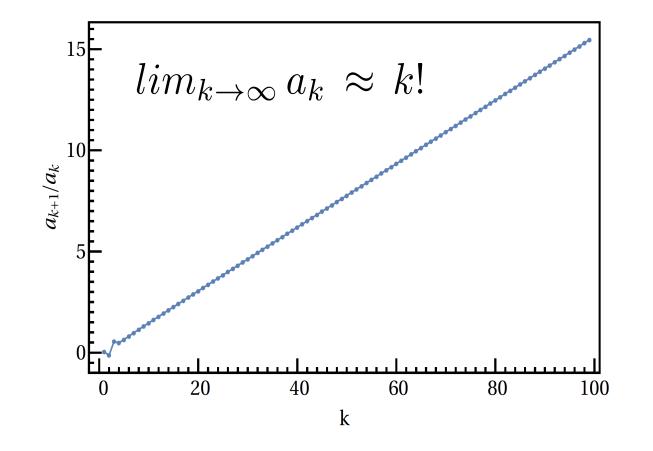


IR regime: L=1 case

From linear response theory

$$\frac{dc_1}{dw} = F_1(w, c_1)$$

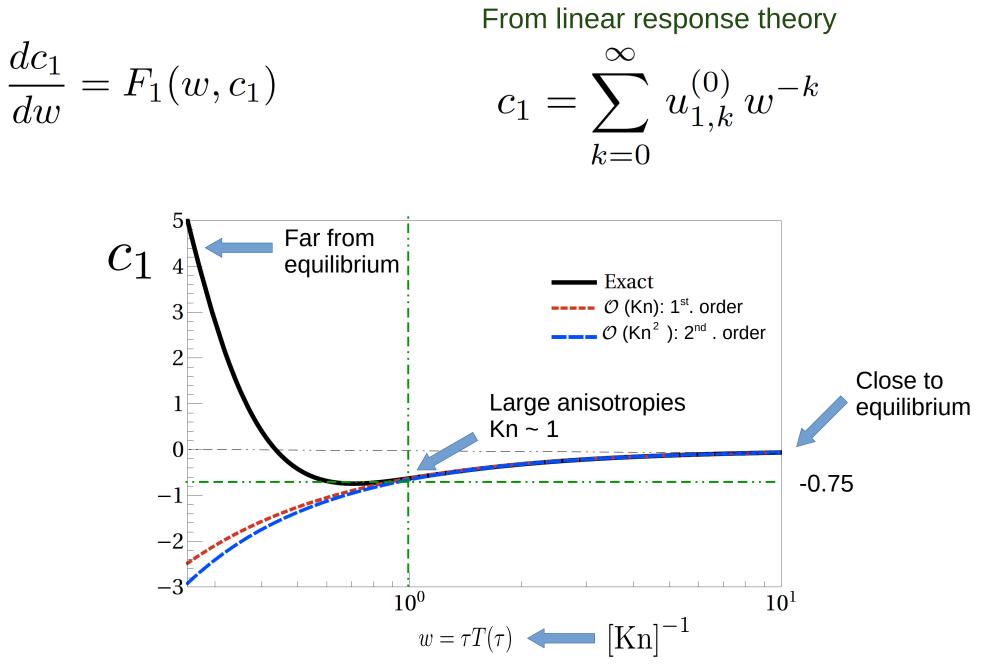
$$c_1 = \sum_{k=0}^{\infty} u_{1,k}^{(0)} w^{-k}$$



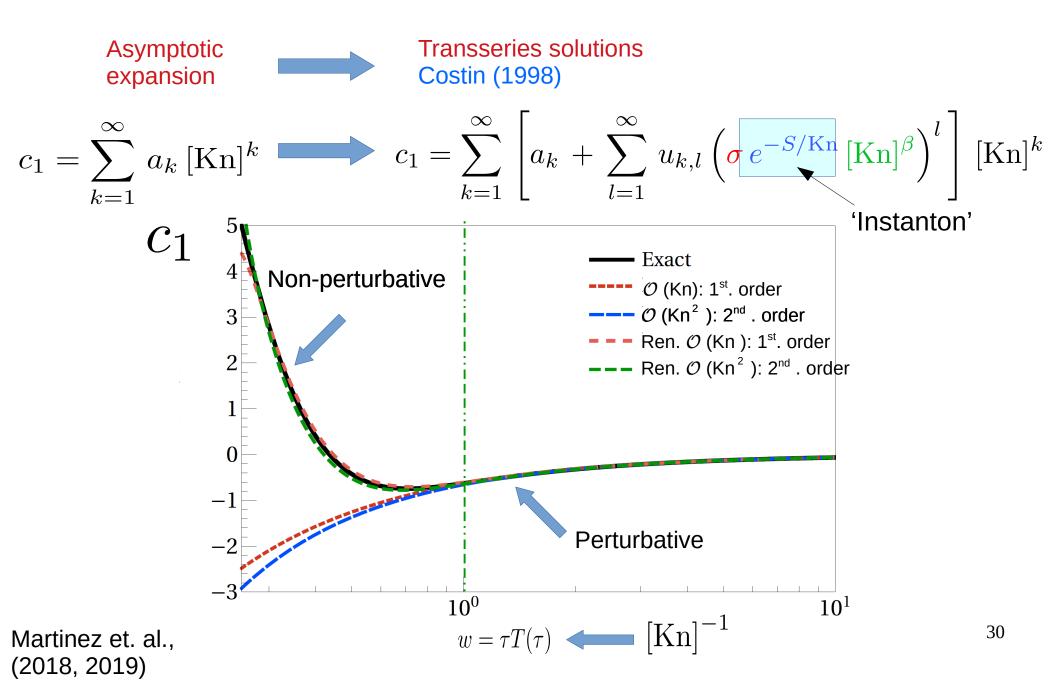
Perturbative asymptotic expansion is divergent!!!!

Borel resummation is one way to sort out this type of situations.

IR regime: L=1 case



Resurgence and transseries



Transseries solutions to ODEs

If you have a non-linear differential equation of the form

$$\mathbf{y}' = \mathbf{f}_0(x) - \hat{\Lambda}\mathbf{y} - \frac{1}{x}\hat{B}\mathbf{y} + \mathbf{g}(x, \mathbf{y})$$

Then

1. Non-resonance condition: Λ does not have null eigenvalues 2. Regularity when $x \to \infty$

Duke Math. J. vol 93, No 2, 1998

How does this happen?

Linearize around the leading order term of the perturbative series

$$\frac{d\delta c_1}{dw} = \frac{\partial F_1}{\partial c_1} \Big|_{c_1 = \bar{c}_1} \delta c_1$$
$$\delta c_1(w) = \sigma_1 e^{-S_1 w} w^{-b_1}$$
Lyapunov exponent Anomalous dimension

Continue doing this procedure to all perturbative orders

Transseries solutions

$$c_{1}(w) = \begin{bmatrix} u_{1,0}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,0}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix} \\ + \frac{1}{w} \begin{bmatrix} u_{1,1}^{(0)} + u_{1,1}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,1}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix} \\ + \frac{1}{w^{2}} \begin{bmatrix} u_{1,2}^{(0)} + u_{1,2}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,2}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix}$$
Perturbative IR data
Non-Perturbative
Resummation of
fluctuations around the

IR perturbative

expansion

Transport coefficients in the far from equilibrium regime

$$c_1(w) \equiv \sum_{k=0}^{+\infty} G_{1,k}(\sigma_1\zeta_1(w))w^{-k}$$

$$G_{1,k}(\sigma_1\zeta(w)) = \sum_{n=0}^{\infty} u_{1,k}^{(n)} [\sigma_1\zeta_1(w)]^n$$

Each function G_{1,k} satisfies:

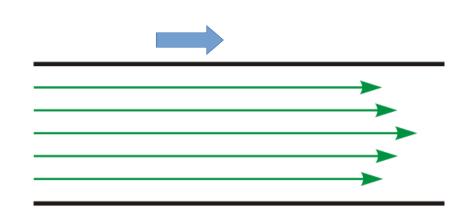
$$\lim_{w \to \infty} G_{1,k} = \underbrace{u_{1,k}^{(0)}}_{1,k} \rightarrow \text{Transport coefficient}$$

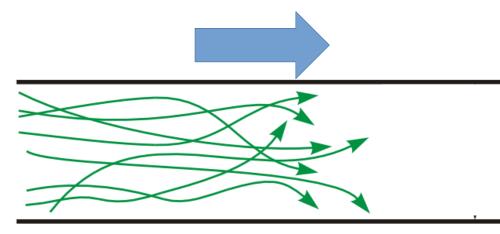
For instance

$$\frac{\eta}{s} = -\frac{3}{40} \lim_{w \to \infty} G_{1,1}(\sigma_1 \zeta(w))$$

$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,k}(\sigma_1\zeta(w))$$
 34

Non-newtonian fluids and rheology



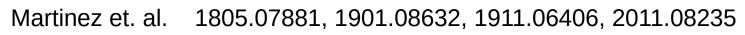


 $\pi_{yx} \sim \eta \,\partial_y v_x$

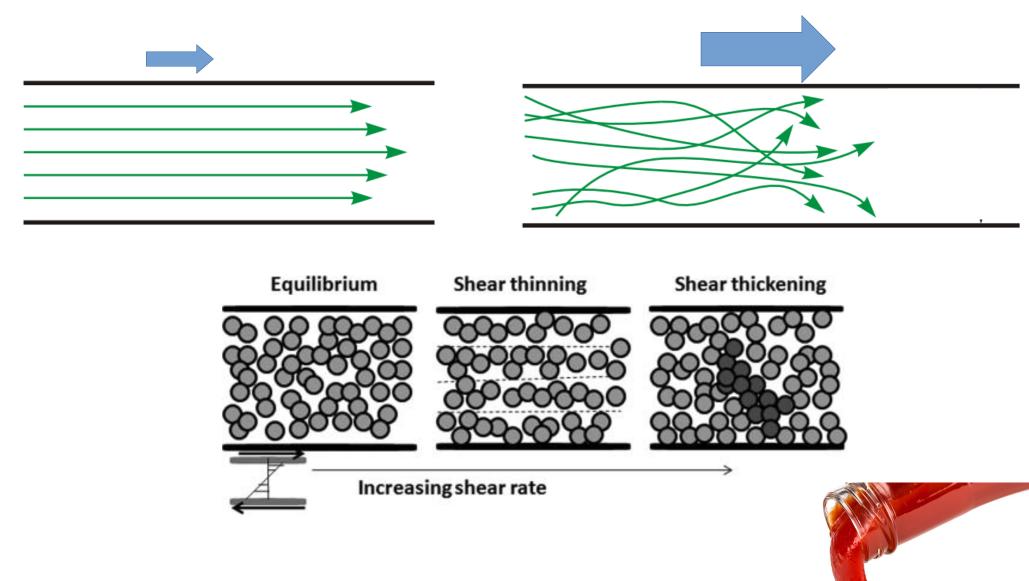
This is called shear thinning and shear thickening

Shear viscosity

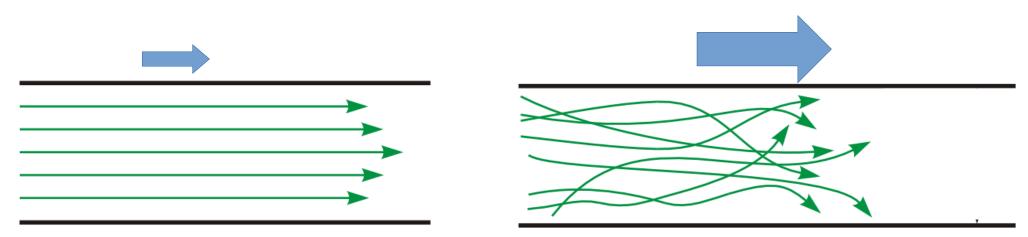
- Becomes a function of the gradient of the flow velocity
- can increase or decrease depending on the size of the gradient of the flow velocity



Non-newtonian fluids and rheology

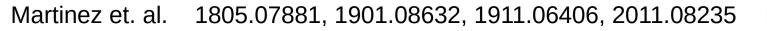


Non-newtonian fluids and rheology



$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,k}(\sigma_1\zeta(w))$$

Thus, transseries solutions resummes non-perturbative contributions when the dissipative corrections are large. As a result, each transport coefficient is renormalized



Dynamical system as a RG flow

S. Gukov (2016) RG flows are dynamical systems

Is it true in the other way around?

Sometimes a dynamical system is a RG flow.Under which conditions?

Dynamical system as a RG flow

Let's rewrite the ODEs in a precise manner

$$\frac{dc_1}{d\log w} = \beta_1(c_1, w)$$

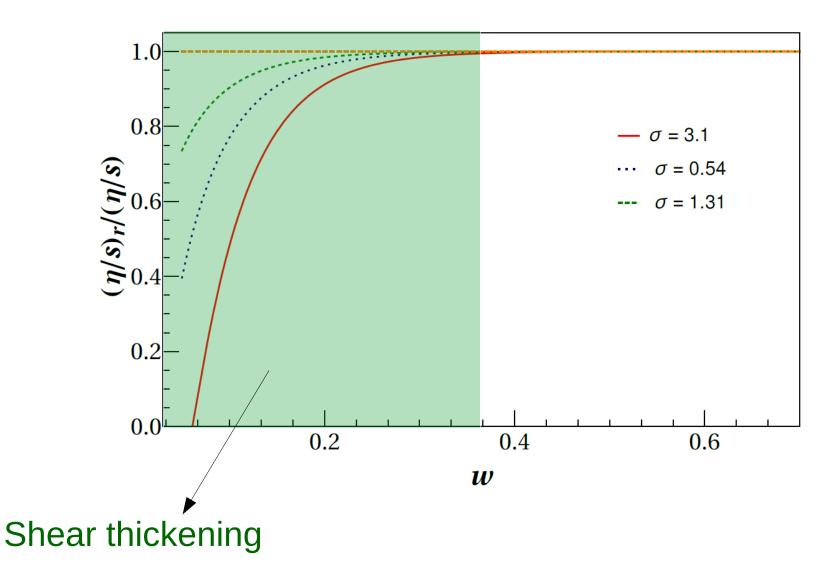
Any observable $\mathfrak{O} = \mathfrak{O}(G_{1,k}(\sigma_1\zeta_1))$

$$\frac{d\mathfrak{O}(G_{1,k}(\sigma_1\zeta_1))}{d\log w} = -\sum_{k=0}^{\infty} \left[(b_1 + S_1 w) \,\hat{\zeta}_1 G_{1,k}(\sigma_1\zeta_1) \right] \,\frac{\partial\mathfrak{O}}{\partial G_{1,k}}$$

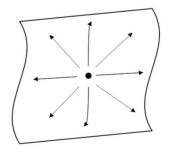
RG flow equation for shear viscosity over entropy ratio is simply obtained by using

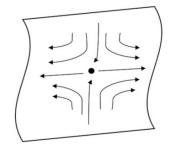
$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,k}(\sigma_1\zeta(w))$$

Transient rheological behavior



UV regime





Let's start by following a similar procedure by changing $w \Rightarrow 1/z$ and expand when $z \Rightarrow \infty$

$$rac{dc_1}{dz} = F_1(c_1,z)$$

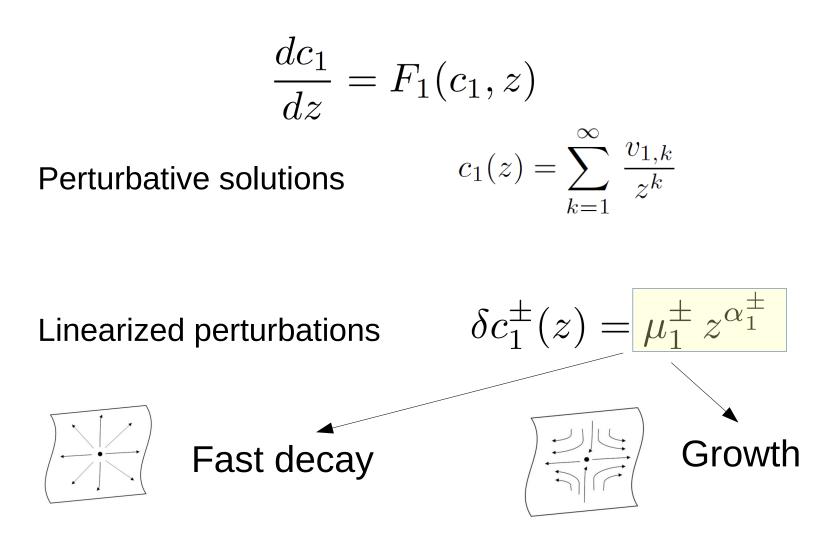
ve solutions $c_1(z) = \sum_{k=1}^\infty rac{v_{1,k}}{z^k}$

Perturbati

Linearized perturbations

$$\delta c_1^{\pm}(z) = \mu_1^{\pm} z^{\alpha_1^{\pm}}$$
Nower law behavior

Let's start by following a similar procedure by changing $w \Rightarrow 1/z$ and expand when $z \Rightarrow \infty$

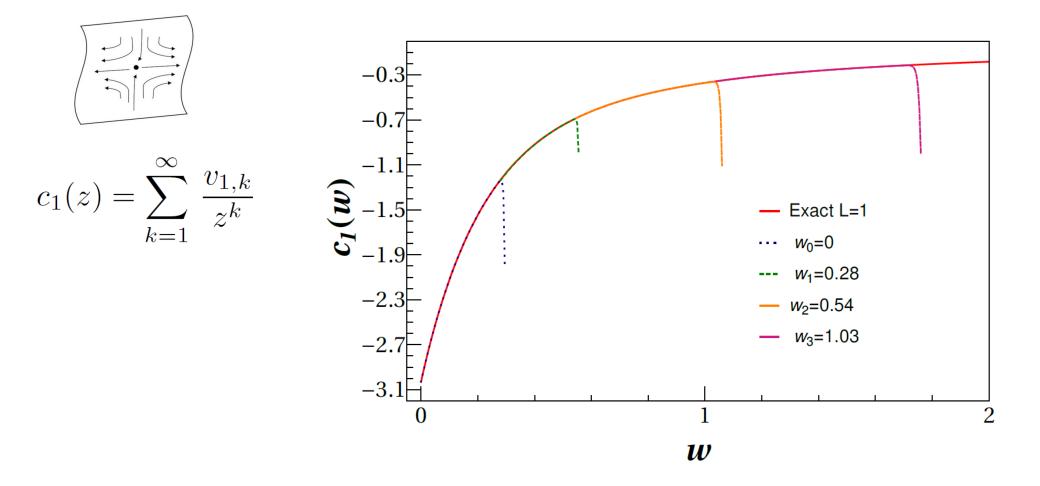


Consider the expansion around saddle point

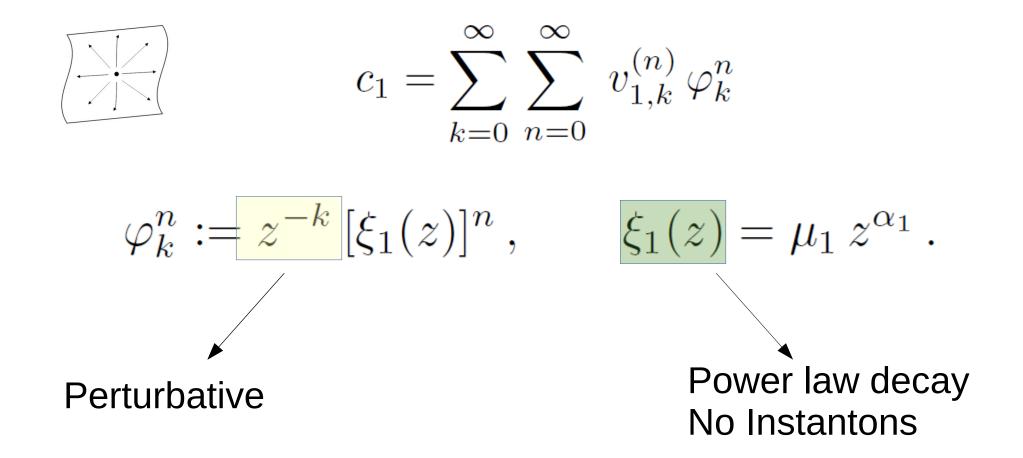
$$c_1(z) = \sum_{k=1}^{\infty} \frac{v_{1,k}}{z^k}$$

Power law series: divergent If truncated one can extend its radius of convergence by analytically continuing!!

Consider the expansion around saddle point

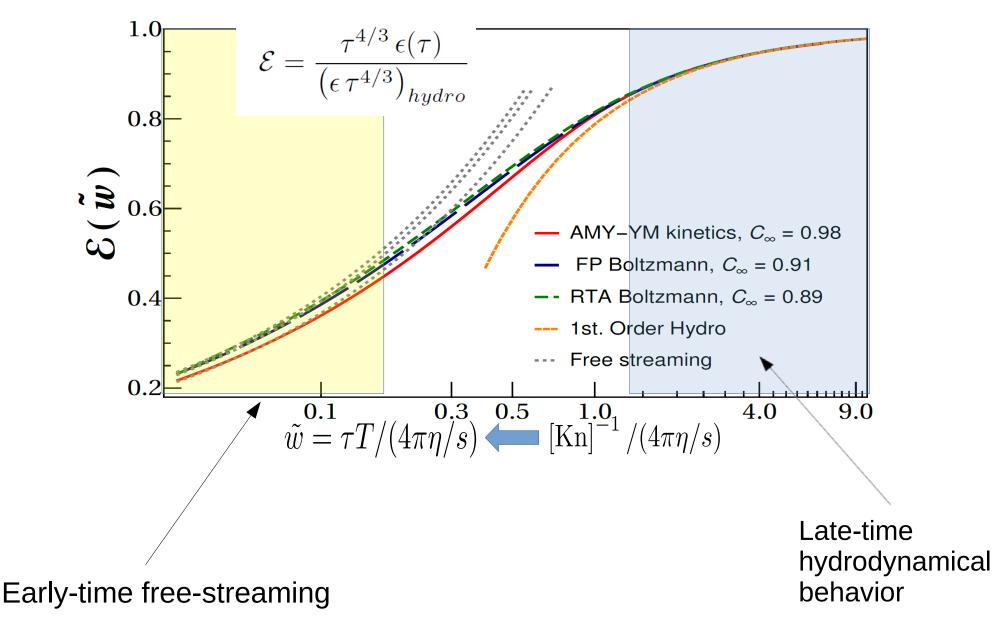


Consider the expansion around source point



Universal properties

Universal features of attractors



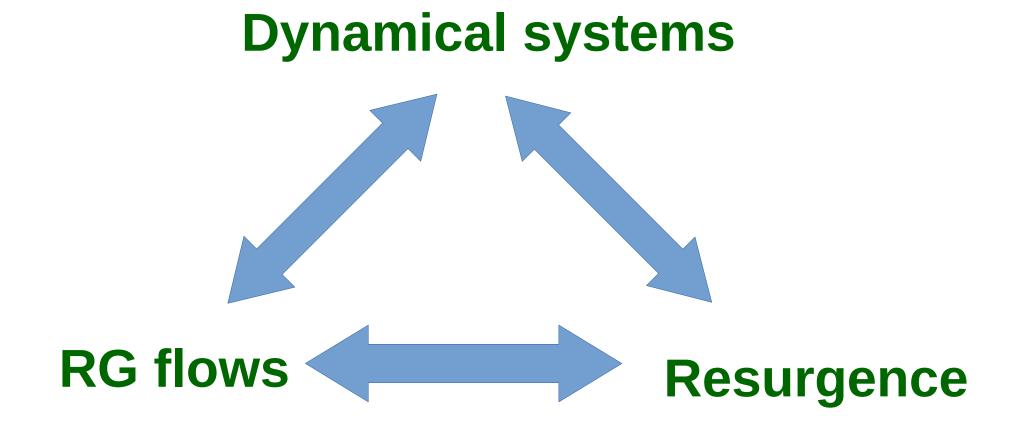
Conclusions

1. UV and IR expansions present different behavior for the Bjorken flow

- **2. IR solutions are written as a multiparameter transseries**
- Transport coefficients get effectively renormalized after resumming non-perturbative instanton-like contributions

3. UV expansions present power law solutions with a finite radius of convergence

4. Early and late time behavior are determined by free streaming and viscous hydrodynamics respectively.

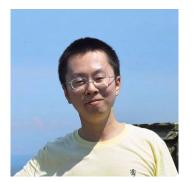


Excellent group of collaborators

 $A. \ Behtash$

C. N. Camacho

S. Kamata



H. Shi

J. Jankowski

T. Schaefer

V. Skokov

M. Spalinski

Outlook

- Resurgence analysis of other relevant systems
 - **1. Jet quenching**
 - 2. Cosmology
 - **3. Cold atoms**
- Challenges:
 - **1.** How to generalize to arbitrarily expanding geometries?
 - 2. Phase transitions?
 - 3. Effective action (Lyapunov functionals)
 - For Gubser flow: Behtash. et. al. PRD 97 044041 (2018)

Backup slides

Asymptotics in the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

$$f(x^{\mu}, p) = \sum_{k=0}^{\infty} (Kn)^k f_k(x^{\mu}, p) \qquad Kn \equiv \frac{l}{L}$$

Macroscopic quantities are simply averages , e.g.,

$$T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f(x^{\mu}, \mathbf{p}) \quad \blacksquare \quad T^{\mu\nu} = \sum_{k=0}^{\infty} (Kn)^{k} T_{k}^{\mu\nu}$$

$$T_0^{\mu\nu} = (\epsilon + p(\epsilon)) u^{\mu} u^{\nu} + p(\epsilon) g^{\mu\nu} \longrightarrow \text{ Ideal fluid } \mathcal{O}(\text{Kn}^0)$$

$$T_1^{\mu
u} = -\eta \, \sigma^{\mu
u} \longrightarrow \mathcal{O}(\text{Kn})$$
: Navier-Stokes $T_2^{\mu
u} \longrightarrow \mathcal{O}(\text{Kn}^2)$: IS, etc

Asymptotics in the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

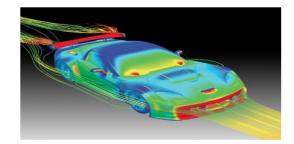
$$f(x^{\mu}, p) = \sum_{k=0}^{\infty} (Kn)^k f_k(x^{\mu}, p)$$

Macroscopic scale (spatial gradients)

$$l\sim\lambda_{mfp}$$

$$\frac{1}{L} \sim \partial_i v^i$$

$$Kn \equiv \frac{l}{L}$$



 $L\sim 1\,m \qquad \ell \sim 10^{-7}\,m$

Expansion fails if

$$Kn \sim \frac{l}{L} \sim 1$$

