Holography Abhors Visible Trapped Surfaces

Åsmund Folkestad¹ Based on 2012.11445 with Netta Engelhardt¹

7 January 2021

¹Massachusetts Institute of Technology

1. Introduction

2. Cosmic Censorship: What, Why and Current Status

3. Tech Review: Holography and Coarse Grained Spacetimes

4. Trapped Surfaces are Hidden by Event Horizons in AdS/CFT

Introduction

• A physicist finds the elixir of life. Can she hope to live forever?

- A physicist finds the elixir of life. Can she hope to live forever?
- Bad news: In GR, a trapped surface implies a singularity.[Penrose '65 → Nobel Prize 2020] Singularities appear to be a generic feature of gravitational collapse in GR.

Trapped surface

- A physicist finds the elixir of life. Can she hope to live forever?
- Bad news: In GR, a trapped surface implies a singularity.[Penrose '65 → Nobel Prize 2020] Singularities appear to be a generic feature of gravitational collapse in GR.
- Good news?: The Weak Cosmic Censorship *conjecture* hypothesizes that all singularities arising from gravitational collapse are hidden by event horizons [Penrose '69]

Trapped surface

- A physicist finds the elixir of life. Can she hope to live forever?
- Bad news: In GR, a trapped surface implies a singularity.[Penrose '65 → Nobel Prize 2020] Singularities appear to be a generic feature of gravitational collapse in GR.
- Good news?: The Weak Cosmic Censorship *conjecture* hypothesizes that all singularities arising from gravitational collapse are hidden by event horizons [Penrose '69]
- **Bad News:** Many violations of WCCC when studying general dimensions and asymptotics or fine-tuned initial data.

Trapped surface

- A physicist finds the elixir of life. Can she hope to live forever?
- Bad news: In GR, a trapped surface implies a singularity.[Penrose '65 → Nobel Prize 2020] Singularities appear to be a generic feature of gravitational collapse in GR.
- Good news?: The Weak Cosmic Censorship *conjecture* hypothesizes that all singularities arising from gravitational collapse are hidden by event horizons [Penrose '69]
- **Bad News:** Many violations of WCCC when studying general dimensions and asymptotics or fine-tuned initial data.
- **Good news!:** in classical holography, we proved that any trapped surface (and thus its implied singularity) is hidden by an event horizon.

Trapped surface

Cosmic Censorship: What, Why and Current Status

Weak cosmic censorship conjecture: nonsingular initial data evolves to a spacetime with a complete asymptotic infinity \mathscr{I}

Why Care

- If WCCC false:
 - Hope of direct observation of strong quantum gravity effects near curvature singularities.
 - A large amount of research might rest on a false assumption that black holes are the typical endpoints of gravitational collapse.

Why Care

- If WCCC false:
 - Hope of direct observation of strong quantum gravity effects near curvature singularities.
 - A large amount of research might rest on a false assumption that black holes are the typical endpoints of gravitational collapse.

• If WCCC true:

- Black holes are the typical endpoints of gravitational collapse, and GR provides fully deterministic evolution outside of them.
- Enables proof of many results, such as:
 - Hawking area theorem
 - Black holes cannot bifurcate
 - Trapped surfaces are hidden behind horizons
 - The Penrose Inequality*

Why Care

- If WCCC false:
 - Hope of direct observation of strong quantum gravity effects near curvature singularities.
 - A large amount of research might rest on a false assumption that black holes are the typical endpoints of gravitational collapse.

• If WCCC true:

- Black holes are the typical endpoints of gravitational collapse, and GR provides fully deterministic evolution outside of them.
- Enables proof of many results, such as:
 - Hawking area theorem
 - Black holes cannot bifurcate
 - Trapped surfaces are hidden behind horizons
 - The Penrose Inequality*
- If WCCC false in GR but true in classical limit of quantum gravity:
 - The above list of results possible not true in all theories, but at least in the ones we care about.
 - Potential way to identify theories that cannot be UV-completed in quantum gravity.

WCCC is false in GR without additional demands:

Demand

Null energy condition Generic initial data D < 5Not asymptotically AdS₄ Fundamental matter

- (X Throw negative null energy into AdS)
- (X Fine tuned massless Klein-Gordon field)¹
- (X Black strings in D > 5)²
- (X Inhomogenous charged black branes)³
- (X Pressureless fluid)⁴

Validity of WCCC for generic initial data in asymptotically flat D = 4remains a possibility, but AdS_4 violation suggests another option.

¹ [Choptuik '93], [Christodoulou '93], [Hamade, Stewart, 9506044] ² [Gregory, LaFlamme 9301052, 9404071], [Lehner, Pretorius 1006.5960]

^{3 [}HSW 1604.06465], [CS 1702.05490], [CHS 1709.07880, 1805.06469], [HS 1901.11096] by Crisford, Horowitz, Santos, and Way.

[[]Shapiro, Teukolsky '91]

WCCC-violating branes in AdS_4 are constructed in Einstein-Maxwell theory.

Including a charged scalar field of mass m and charge q removes the WCCC-violation precisely when

 $q \geq q_{ ext{extremal}}(m)$

WCCC-violating branes in AdS_4 are constructed in Einstein-Maxwell theory.

Including a charged scalar field of mass m and charge q removes the WCCC-violation precisely when

 $q \geq q_{ ext{extremal}}(m)$

This is exactly the statement of the **weak gravity conjecture** [Arkani-Hamed, Motl, Nicolis, Vafa 0601001]

Question

Is some version of cosmic censorship true as a statement about the classical limit of quantum gravity rather than GR with just any fundamental matter?

Question

Is some version of cosmic censorship true as a statement about the classical limit of quantum gravity rather than GR with just any fundamental matter?

There now is evidence in favor of this in holography: two of the most important consequences of WCCC now derived directly in AdS/CFT

• The Penrose Inequality [Engelhardt, Horowitz 1903.00555]

 $M_{
m AdM} \ge F\left({
m Area}[au]
ight)$

• Trapped surfaces lie behind horizons

Tech Review: Holography and Coarse Grained Spacetimes Quantum gravity in an asymptotically Anti-de-Sitter spacetime $\$

Quantum field theory at \mathscr{I} with conformal symmetry

In the limit $G_N \to 0$ we get a duality between classical gravity and $N \to \infty$ CFT.

Entanglement entropy in AdS/CFT

The RT/HRT formula gives a way to calculate CFT von-Neumann entropies through a gravity calculation:

$$S_{\mathrm{vN}}[
ho_{\mathbf{A}}] = rac{\mathrm{Area}[X_{\mathbf{A}}]}{4G_{N}\hbar}$$

where

- A spatial subregion of CFT
- $\rho_{\mathbf{A}} = \operatorname{Tr}_{\mathbf{A}^c} |\psi\rangle \langle \psi|$
- X_A the smallest extremal surface with $\partial X_A = \partial A$ that is also homologous to A

Homologous: there exists a hypersurface Σ so that $\partial \Sigma = \mathbf{A} \cup X_B$

HRT surfaces - Examples

HRT surfaces - Examples

A crucial observation

• Acting with a CFT unitary with support only on A can never change $S_{vN}[\rho_A]$:

$$S_{\mathrm{vN}}[
ho_{A}] = S_{\mathrm{vN}}[U
ho_{A}U^{\dagger}], \qquad ext{if } U = V_{A}\otimes \mathbb{1}_{A^{c}}$$

- In the bulk, this means that X_A can never be timelike separated to A [Wall 1211.3494], [Headrick et al. 1408.6300]
- Taking A to be a full connected component of \mathscr{I} , it means X_B must be spacelike to \mathscr{I}

surface $\sigma = \text{codimension 2 spatial submanifold}$

- Every surface has two null normal vector fields: k^a and ℓ^a
- Firing null geodesics along these normals gives null congruences N_k , N_ℓ

surface $\sigma = \text{codimension 2 spatial submanifold}$

- Every surface has two null normal vector fields: k^a and ℓ^a
- Firing null geodesics along these normals gives null congruences N_k , N_ℓ

• The expansions θ_k and θ_ℓ measures the change in the area-element on the light-front

$$\theta_k = k^a \nabla_a \ln \sqrt{\det h_{bc}}, \qquad \theta_\ell = \ell^a \nabla_a \ln \sqrt{\det h_{bc}}$$

Trapped surfaces and apparent horizons

Trapped surface τ

 $heta_k < 0, \ heta_\ell < 0$

Marginally trapped surface μ

 $\theta_k = 0, \ \theta_\ell < 0$

Coarse grained spacetimes

Provided μ is **minimar**, meaning it satisfies some additional technicalities, we can construct an associated **coarse grained spacetime**

[Engelhardt, Wall 1806.01281]

Main observation

If μ was in causal contact with \mathscr{I} in $M[\mu]$, then so would X_A , allowing us to change $S_{\nu N}[\rho_A^{\text{coarse}}]$ with a unitary on A! Thus μ is behind the horizon in the coarse grained spacetime.

Rest of the talk: μ must also be behind the horizon in the original spacetime. Furthermore, the same applies for generic trapped surfaces τ .

Trapped Surfaces are Hidden by Event Horizons in AdS/CFT

Theorem

If there exists a past well-behaved trapped surface τ in a classical asymptotically AdS spacetime (M, g) satisfying the null energy condition, then at least one of the following holds:

- (M,g) has an event horizon and au lies behind it
- (M,g) has no holographic dual
- Classical GR admits NEC-preserving solutions with evaporating singularities

We also assume no closed timelike curves and a genericity condition which we believe can be proved directly.

We cannot assume global hyperbolicity or strong asymptotic predicatbility

• Trapped surfaces are time-local signatures of event horizons

Implications

Assuming classical GR has no NEC-preserving evaporating singularities, we then have in holographic spacetimes that

- Trapped surfaces are time-local signatures of event horizons
- Every time the Penrose theorem is used to invoke a singularity, we can also use it to invoke a horizon shielding it

- Trapped surfaces are time-local signatures of event horizons
- Every time the Penrose theorem is used to invoke a singularity, we can also use it to invoke a horizon shielding it
- Event horizons appear to be bulk signatures of chaos in the CFT [Shenker, Stanford, 1306.0622]

If so, then trapped surfaces are time-local signatures of chaos.

- Trapped surfaces are time-local signatures of event horizons
- Every time the Penrose theorem is used to invoke a singularity, we can also use it to invoke a horizon shielding it
- Event horizons appear to be bulk signatures of chaos in the CFT [Shenker, Stanford, 1306.0622]

If so, then trapped surfaces are time-local signatures of chaos.

• If no holographic dual means no UV-completion in QG, then naked trapped surfaces potential swampland condition.

- Trapped surfaces are time-local signatures of event horizons
- Every time the Penrose theorem is used to invoke a singularity, we can also use it to invoke a horizon shielding it
- Event horizons appear to be bulk signatures of chaos in the CFT [Shenker, Stanford, 1306.0622]

If so, then trapped surfaces are time-local signatures of chaos.

- If no holographic dual means no UV-completion in QG, then naked trapped surfaces potential swampland condition.
- In the quantum theory, if a trapped surface is outside the horizon, the any signal from it should not reach \mathscr{I} before a time of order $\mathcal{O}(t_{\mathrm{page}})$

Structure of proof

Evaporating singularity

Definition

An asymptotically AdS spacetime (M, g) is said to be devoid of evaporating singularities if

- If an event horizon exists, it reaches i^+
- In the conformal completion, every set bounded by a closed compact hypersurface has a compact interior.

For the argument that this assumption suffices to show that μ is behind the horizon in both $M[\mu]$ and M, see the paper.

Thank you for listening!

μ behind the horizon in M

Let Z be an extension of ${\cal O}_W[\mu]$ past potential Cauchy horizons such that

- 1. Z is spacelike to μ in $O_W[\mu] \cup Z$
- 2. Z is maximal, subject to the above.

The original spacetime induces a particular choice of Z. Let us choose this.

μ behind the horizon in M

If $i^+ \subset Z$ we are done, since i^+ is spacelike to μ , and by the absence of closed timelike curves, this must remain true in the full spacetime M that contains $O_W[\mu] \cup Z$.

If $i^+ \not\subset Z$, then CFT evolution proceeds further. This means that Z can be extended even further,⁵ but since Z was a maximal extension subject to (1), any further extension⁶ must put μ into causal contact with \mathscr{I} , which yields a pathological coarse grained spacetime. Thus $i^+ \not\subset Z$ contradicts the HRT proposal.

 5 If it cannot, then spacetime breaks down, and μ lies behind the horizon in the sense that it can send no signals to $\mathscr I$ through spacetime.

⁶Including any one compatible with data on $N_{-k}[\mu]$