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Phenomena and signatures associated with chaotic dynamics:

Transport Thermalization Butterfly effect

Pole skipping Complexity growth Eigenvalue statistics

Ultimate goal: describe these phenomena in a unified theory
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Phenomena and signatures associated with chaotic dynamics:

Transport Thermalization Butterfly effect

Pole skipping Complexity growth Eigenvalue statistics

Ultimate goal: describe these phenomena in a unified theory

Goal of talk: 
• Develop EFTs at long distances and at late times for some of these processes
• Study their interplay and relation to gravity through AdS/CFT
• Go away from infinite coupling/maximal chaos

Quantum chaotic dynamics
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Dynamics of conserved densities         is slow for 
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Hydrodynamics describes transport universally in all chaotic systems.

• At finite temperature most excitations relax in 
Dynamics of conserved densities         is slow for 

• Relativistic hydro from hep-th POV is an EFT based on systematic
long distance, late time expansion. Fluid variables:

Dynamics from conservation of

• Correlation functions

• Can write any operator of the microscopic theory as
Correlation functions can be computed from this

• In systems without momentum conservation: 

Hydrodynamics 
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Hydrodynamics describes transport universally in all chaotic systems.

• Hydrodynamic pole

• Would be nice to compute in a microscopic theory. Could study the fate of 
the hydrodynamic pole lines for , read off (all order) transport coefficients.

• Landmark achievement of AdS/CFT: compute finite temperature correlators at infinite 
coupling [Policastro, Son, Starinets]
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Hydrodynamics describes transport universally in all chaotic systems.

• Hydrodynamic pole

• Would be nice to compute in a microscopic theory. Could study the fate of 
the hydrodynamic pole lines for , read off (all order) transport coefficients.

• Landmark achievement of AdS/CFT: compute finite temperature correlators at infinite 
coupling [Policastro, Son, Starinets]

• Alternative history: string theorists discover hydrodynamics by studying the fluid/gravity 
correspondence for bumpy AdS black holes [Bhattacharyya et al.]

• Want to discover universal EFTs for other chaotic phenomena following the “alternative 
history” path

Hydrodynamics 
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Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

• Quantum many-body context: simple operators (few-body) evolve into complex ones 
(many-body), one particle can have effect later in entire system.
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Butterfly effect in many-body systems: [Larkin, Ovchinnikov; Shenker, Stanford; Kitaev]

• In classical physics butterfly effect is sensitivity to initial data:

• Quantum many-body context: simple operators (few-body) evolve into complex ones 
(many-body), one particle can have effect later in entire system.

• Diagnostic is OTOC:

In its expansion both TO and OTO terms.

Butterfly effect, operator growth and OTOC



Effective size of an operator in a thermal state:
• Chaotic time evolution makes simple local operators

complex. Size can be probed by the OTOC:
[Roberts, Susskind, Stanford]
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Effective size of an operator in a thermal state:
• Chaotic time evolution makes simple local operators

complex. Size can be probed by the OTOC:
[Roberts, Susskind, Stanford]

• Can compute in AdS/CFT in hydro-like regime
[Shenker, Stanford]

• Chaos bound [Maldacena, Shenker, Stanford]

• Refinement: [Kemani, Huse, Nahum; Xu, Swingle; MM, Sárosi]

Generic velocity dependence: even when
for get maximal chaos.

Chaotic operator growth

Defines      
.
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The SYK model is a solvable chaotic system. It can be made spatially local [Gu, Qi, Stanford] 

• The model can be solved analytically at low-T for any q or at any T for large q
[Maldacena, Stanford; Cotler et al.; Streicher; Choi, MM, Sárosi] 

• Saddle point gives fermion propagator,
determines the four point function [Streicher; Choi, MM, Sárosi] 

Dimensionless coupling constant: 
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Effective size of an operator in a thermal state:
[Kitaev; Maldacena, Stanford; Gu, Qi, Stanford; Choi, MM, Sárosi] 

As we change    , interpolates between free theory and maximally chaotic theory.
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Effective size of an operator in a thermal state:
[Kitaev; Maldacena, Stanford; Gu, Qi, Stanford; Choi, MM, Sárosi] 

As we change    , interpolates between free theory and maximally chaotic theory.

• For , evaluate using saddle point: [Gu, Kitaev; Xu, Swingle] 

For              ,           is the For               “stress tensor” 
Legendre tf. of          . dominates, and chaos is maximal.
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Role of           played by leading Regge trajectory (pomeron)          , known in               SYM
[Costa et al.; Gromov et al.] 
Implies that for , and for smaller coupling. 
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• For              ,  is the Legendre transform of          .
For  “stress tensor” dominates, and chaos is maximal.

• Similar results in CFT on                        (including 2d CFT at finite T)
Role of           played by leading Regge trajectory (pomeron)          , known in               SYM
[Costa et al.; Gromov et al.] 
Implies that for , and for smaller coupling. 
(Only for  we get .)

• At low-T SYK is dominated by a time reparametrization pseudo-Goldstone boson, 
the boundary graviton of the dual JT gravity [Kitaev; Maldacena, Stanford; Jensen; …]
Challenge is to go away from maximal chaos [Choi, Haehl, MM, Sárosi, Streicher wip]
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Pole skipping

OTOC motivated from operator growth. Chaos data from simpler observables?

• Recall that encodes hydro response. Family of poles

• In low-T SYK can compute away from hydro regime [Gu, Qi, Stanford] 

At residue of hydro pole vanishes. [Blake, Lee, Liu]

• In AdS/CFT at pole skipping point one Einstein eq. trivializes 
Green function ambiguous as computed from ratio of two falloffs:

Pole is zero of , zeros come from . At  p.s. point two indep infalling modes. 
[Grozdanov, Schalm, Scopelliti; Blake, Davison, Grozdanov, Liu]
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Pole skipping

Proposal:

Test in large q SYK chain [Choi, MM, Sárosi]

1. extracted from OPE limit of four point function, i.e.
of the bilocal action

2. Linearize around saddle:

3. Matsubara Green’s function

4. Find unique analytic continuation
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Pole skipping

• Test in large q SYK chain

5. Trace pole and zero lines

6. Can also analyze dispersion relations to all orders in the derivative expansion
[Withers; Grozdanov, Kovtun, Starinets, Tadic]
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Summary

Spatial structure of OTOC is probed by

• Explicit examples in AdS/CFT, SYK chains, CFTs in , …
Refined chaos bound is saturated, when stress tensor dominates. 

Pole skipping happens at

• Captures stress tensor contribution to chaos, for                          chaos is controlled by it.
(This contribution can be decreased or cancelled completely.) 

• Demystifies pole skipping:                    and both are properties of the stress tensor, 
stress tensor does not know about

• Closed form thermal Green function       



Thermalization
• Entanglement entropy as a probe
• Membrane theory is the EFT

Thermalization
• Entanglement entropy as a probe
• Membrane theory is the EFT

Outline

Butterfly effect
• Butterfly effect, operator growth and OTOC 
• Refinement of the chaos bound

Pole skipping
• Away from maximal chaos
• Explicit thermal Green’s function

Summary and open questions



Quantum thermalization

• To define thermalization we need coarse graining

In a gas, we coarse grain multi-particle correlations.
In many body systems or QFTs consider subsystems

Thermalization through the lens of EE



Quantum thermalization

• To define thermalization we need coarse graining

In a gas, we coarse grain multi-particle correlations.
In many body systems or QFTs consider subsystems

• In analogy with the Second Law, expect the EE

to increase with time.

Thermalization through the lens of EE



Quantum thermalization

• To define thermalization we need coarse graining

In a gas, we coarse grain multi-particle correlations.
In many body systems or QFTs consider subsystems

• In analogy with the Second Law, expect the EE

to increase with time.

• Quench: sparsely entangled initial state, evolves into typical state

Thermalization through the lens of EE



Quantum thermalization

• To define thermalization we need coarse graining

In a gas, we coarse grain multi-particle correlations.
In many body systems or QFTs consider subsystems

• In analogy with the Second Law, expect the EE

to increase with time.

• Quench: sparsely entangled initial state, evolves into typical state

• Instead of following an operator (matrix), we follow a number

Universal probe, captures the essence of thermalization

Thermalization through the lens of EE



Thermalization in quantum quenches

• Evolution of conserved densities universal in hydro limit

EE dynamics expected to simplify in the same limit
Goal: develop effective theory for extensive piece
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Thermalization in quantum quenches

• Evolution of conserved densities universal in hydro limit

EE dynamics expected to simplify in the same limit
Goal: develop effective theory for extensive piece

• Qualitative picture of EE from 2d CFT
[Cardy, Calabrese], AdS/CFT
[Hartman, Maldacena; Liu, Suh], 
free theory in higher d [Casini, Liu, MM;
Cotler, Hertzberg, MM, Mueller]

• Increase of EE in itself does not detect
chaos, but its detailed dynamics is universal
and differs from integrable theories

Entropy in the hydrodynamic limit



The membrane theory can be derived in two disparate 
physical systems

• In AdS/CFT EE is computed by extremal surface area 
probing the out of equilibrium state
[Hubeny, Rangamani, Ryu, Takayanagi]

• Important variables in the hydro limit is the HRT surface 
projection to the boundary spacetime [MM2]

Membrane theory of entanglement dynamics



The membrane theory can be derived in two disparate 
physical systems

• In AdS/CFT EE is computed by extremal surface area 
probing the out of equilibrium state
[Hubeny, Rangamani, Ryu, Takayanagi]

• Important variables in the hydro limit is the HRT surface 
projection to the boundary spacetime [MM2]

• In random quantum circuit models of time evolution, EE 
upper bound by minimal cut is saturated in hydro limit
[Nahum, Ruhman, Vijay, Haah; Jonay, Huse, Nahum] 

• Remarkable unification of CMT and HEP approaches

Membrane theory of entanglement dynamics



• Dynamics of projection governed by local action

with membrane ending on A on upper boundary,
perpendicularly on lower boundary.

• Minimal membrane action computes entropy.
is repackaging of geometry, independent of 

quench details. 

Membrane theory of entanglement dynamics
Horizon     boundary

Matter



• Dynamics of projection governed by local action

with membrane ending on A on upper boundary,
perpendicularly on lower boundary.

• Minimal membrane action computes entropy.
is repackaging of geometry, independent of 

quench details. 

• In higher dim. get true membrane

Membrane theory of entanglement dynamics
Horizon     boundary

Matter

[MM, van der Schee]



Can reformulate holographic surface extremization in d+1 dimensions as membrane 
minimization in d dimensions in the limit hydro limit. [MM2] 

• Membrane theory:

Membrane theory of entanglement dynamics



Can reformulate holographic surface extremization in d+1 dimensions as membrane 
minimization in d dimensions in the limit hydro limit. [MM2] 

• Membrane theory:

• Using the NEC, can prove the following properties
of , can be thought of as a transport coeff.

Membrane theory of entanglement dynamics

Monotonic
Convex 
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EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [MM1; MM2]

• Strip:

• Sphere:

• Simple bound on saturation time from operator growth: [MM, Stanford]

For elongated shapes in 4D we find: [MM, van der Schee]

Black holes (often) saturate entanglement entropy the fastest. 

Applications
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The membrane theory is robust, can be generalized away from global quenches 
[MM, Virrueta] 

• Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium. 
To subleading order, we get the membrane coupled to hydrodynamics:

• Membrane theory is versatile, has connections to operator growth and 
hydrodynamics, and has all the features to be a universal theory 

Extensions
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Summary
Phenomena associated with chaotic dynamics:

• Hydrodynamics is the EFT for transport
Interplays: pole skipping point is continuation of hydro mode  
membrane couples to hydro dofs geometrically

• characterizes OTOCs,
refined bound, explicit examples

EFT from reparametrizations

• Demystified pole skipping, explicit thermal Green fn

• Membrane theory of EE dynamics 
from holography and random 
circuits, rich applications
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vB hints at nontrivial interplay between these phenomena:

• delineates region in which OTOC grows 
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Role of vB

vB hints at nontrivial interplay between these phenomena:

• delineates region in which OTOC grows 

Since for                          stress tensor dominates chaos, 
reasonable that         knows about         through pole skipping.

• Manifestations of vB in EE dynamics 
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Open questions and some hints

• EFT for operator growth? Relation to Schwarzian, Reggeon field theory?
Hint: Explicit large q SYK results should help in generalizations 
[Choi, Haehl, MM, Sárosi, Streicher wip]
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Open questions and some hints

• EFT for operator growth? Relation to Schwarzian, Reggeon field theory?
Hint: Explicit large q SYK results should help in generalizations 
[Choi, Haehl, MM, Sárosi, Streicher wip]

• How to derive the membrane theory from EFT reasoning?
How to relate to other quantities?
Hint: vB determines the endpoint of

• Unifying EFT in the hydro limit?
Hint: EFT for maximal chaos explains pole skipping [Blake, Lee, Liu]

Membrane theory interplay with hydro, key role of vB

• “Gravity is the hydrodynamics of entanglement.” Can we get GR from the membrane? Hint: 
Can reconstruct static BH geometry 

Open questions

membrane theory



• Implications for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.
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• Implications for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.

• Implications for tensor network approaches? 
Hint: Found a quantitative tensor network-like description, after partially solving the EOMs.

Open questions

Organized by RG scale

Equally important at 
the longest scales

EoM


