Five little stories

about liquids

Matteo Baggioli (SJTU Shanghai)

"perdersi in un bicchere d'acqua"

gases

solids

liquids

Baggioli Zaccone PNAS 2021

The

Simple counting argument
+
dispersion relation

$$
g(\omega) d \omega=f(k) d k=\frac{k^{2}}{2 \pi^{2}} d k
$$

$$
g(\omega)=\frac{1}{2 \pi^{2} v^{3}} \omega^{2}
$$

The

Explanation not in textbooks

The Instantaneous Normal Modes of Liquids

Richard M. Stratt
Department of Chemistry, Brown University, Providence, Rhode Island 02912

Received December 22, 1994

I. Liquids Are Not Held Together by Springs

It hardly needs saying that the presence, and indeed the dynamics, of liquids plays a crucial role in chemical processes ranging from electron transfer ${ }^{1}$ to acid-base chemistry. ${ }^{2}$ Sometimes this role is merely the result of the solvent's availability as a reactant present in huge excess, but more generically, it arises becauses solvents can solvate: they can alter the energy of a
sufficient detail to be able to tackle these questions. The behavior of molecules in gases is easy; the average intermolecular distances are so large that molecules can be regarded as all but solitary creatures whose tranquil existence is disturbed only infrequently and only then by the presence of a single intruder at a time. Solids might seem a much more difficult case, but they too often turn out not to present all that much

Instantaneous normal modes (INMs)

The locally anharmonic dynamics of atoms in liquids leads to many saddle points in the energy landscape. These saddle points are associated with localized unstable (exponentially decaying) modes, with purely imaginary frequency.

$$
\frac{d \mathbf{v}}{d t}=-\Gamma \mathbf{v}, \quad \Gamma \equiv 1 / \tau
$$

[Langevin equation]
Large amount of purely relaxational modes

Starting point

$$
g(\omega)=\frac{1}{3 \mathcal{N}} \sum_{j} \delta\left(\omega-\omega_{j}\right) \quad G(\omega)=\frac{1}{i \omega+\Gamma}
$$

Some math after (complex Plemeji identity)

J Julve, R Cepedello, FJ de Urries, The complex Dirac Delta, Plemelj formula, and integral representations. arXiv e-prints, arXiv:1603.05530 (2016).
J Julve, FJ de Urríes, Inner products of resonance solutions in 1d quantum barriers. J. Phys. A: Math. Theor. 43, 175301 (2010).

$$
\begin{aligned}
g(z) \equiv \delta\left(z-z^{\prime}\right) & =-\frac{1}{3 \pi \mathcal{N}} \operatorname{Im}\left[\frac{1}{i \omega-(-\Gamma)+i 0^{+}}\right] \\
& =\frac{1}{3 \pi \mathcal{N}} \frac{\omega}{\omega^{2}+\Gamma^{2}} .
\end{aligned}
$$

Caveat

IF separation of scales
$\Gamma^{*} \ll \Gamma_{2}, \Gamma_{3}, \ldots$

[Red line is close to the glass transition. The system is becoming solid. See the low regime becomes quadratic and a relic of the Van-Hove singularity is appearing]

From the fit of the DOS we obtain
$\Gamma(T)=\Gamma_{0} e^{-U / T}$
$\log (\Gamma)$

Famous
Arrhenius law

The

-

$C(T) \sim T^{d}$

The

-

Explanation not in Textbooks

The Instantaneous Normal Modes of Liquids

Richard M. Stratt
Department of Chemistry, Brown University, Providence, Rhode Island 02912

Received December 22, 1994

I. Liquids Are Not Held Together by Springs

It hardly needs saying that the presence, and indeed the dynamics, of liquids plays a crucial role in chemical processes ranging from electron transfer ${ }^{1}$ to acid-base chemistry. ${ }^{2}$ Sometimes this role is merely the result of the solvent's availability as a reactant present in huge excess, but more generically, it arises becauses solvents can solvate: they can alter the energy of a
sufficient detail to be able to tackle these questions. The behavior of molecules in gases is easy; the average intermolecular distances are so large that molecules can be regarded as all but solitary creatures whose tranquil existence is disturbed only infrequently and only then by the presence of a single intruder at a time. Solids might seem a much more difficult case, but they too often turn out not to present all that much

Standard derivation for bosonic fields

$$
C_{V}(T)=\left(\frac{\partial E}{\partial T}\right)_{V}=3 N \int_{0}^{\infty} \frac{(\omega / T)^{2} e^{\omega / T}}{\left(e^{\omega / T}-1\right)^{2}} g(\omega) d \omega=3 N \int_{0}^{\infty}\left(\frac{\omega}{2 T}\right)^{2} \sinh \left(\frac{\omega}{2 T}\right)^{-2} g(\omega) d \omega
$$

+ use our previous result

$$
g_{l i q}(\omega) \sim \frac{\omega}{\omega^{2}+\Gamma^{2}} e^{-\omega^{2} / \omega_{D}^{2}}
$$

The smaller the relaxation rate:

1) the lower the specific heat
2) the later it bends and the lower the curvature with the temperature

LENNARD-JONES POTENTIAL

$$
V_{\mathrm{LJ}}=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right],
$$

$\mathrm{C}(\mathrm{T})$

TEXTBOOK MATERIAL

The

Explanation not in Textbooks

There is a liquid to solid crossover going to small sizes (or large momenta)

Identification of a low-frequency elastic behaviour in liquid water

Laurence Noirez ${ }^{1}$ and Patrick Baroni ${ }^{1}$

Theory of elasticity

displacement $\vec{u} \equiv \vec{x}^{\prime}-\vec{x}$
strain tensor $\epsilon_{i j} \equiv \frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) \quad u_{i}=\epsilon_{i j} d x^{j}$

Non-affine displacements

Singular parts of the displacements

 (cf.dislocations and vortices)$$
u_{i}(\mathbf{x})=\underbrace{\gamma_{i j} x^{j}}_{\text {affine }}+\underbrace{u_{i}^{\prime}(\mathbf{x})}_{\text {non-affine }}
$$

Compatibility constraint

$$
u_{i}(\mathbf{x})=\underbrace{\gamma_{i j} x^{j}}_{\text {affine }}+\underbrace{u_{i}^{\prime}(\mathbf{x})}_{\text {non-affine }}: \longrightarrow \oint_{L} d u_{i}^{\prime}=-b_{i}
$$

Non-affine displacement produces a finite Burgers vector

Using Stokes' theorem

$$
\mathfrak{e}^{a b j} \partial_{b} \partial_{j} u_{i}^{\prime} \equiv-\alpha_{i}^{a} \neq 0
$$

Moving to the dual picture

$$
\alpha_{i}^{a}=\partial_{\mu} J_{i}^{\mu a}=-\Omega J_{i}^{t a} \neq 0
$$

Hydrodynamics

Goldstone field $\phi_{I}(t, x)$

$$
\left(\lambda_{\perp}=\nabla \times \phi, \lambda_{\|}=\nabla \cdot \phi\right)
$$

Modified (relaxed) Josephson relations

$$
\begin{aligned}
& \partial_{t} \lambda_{\perp}(t, x)-\partial \times \vec{v}(t, x)-\xi_{\perp} \partial_{i} \partial^{i} u_{\perp}(t, x)=-\Omega_{\perp} \lambda_{\perp}(t, x) ; \\
& \partial_{t} \lambda_{\|}(t, x)-\partial \cdot \vec{v}(t, x)-\gamma_{2} \partial_{j} \partial^{j} T(t, x)-\xi_{\|} \partial_{k} \partial^{k} u_{\|}(t, x)=-\Omega_{\|} \lambda_{\|}(t, x)
\end{aligned}
$$

and one finds

$$
\omega_{ \pm}=-\frac{i}{2} \Omega_{\perp} \pm \frac{1}{2 \chi_{\pi \pi}} \sqrt{k^{2} \chi_{\pi \pi}\left[4 G-2\left(\xi_{\perp}-\eta\right) \Omega_{\perp}\right]-\chi_{\pi \pi}^{2} \Omega_{\perp}^{2}+\mathcal{O}\left(k^{4}\right)}
$$

Exactly what we were after for the shear waves dynamics!

It explains also why in glasses shear waves are back!
Because the relaxation timescale becomes huge!

From the same theory We can predict also The so-called Positive-sounddispersion phenomenon

The theoretical framework looks consistent with all the experimental observations

Exploiting Keldysh-Schwinger techniques (and your smart collaborators) and the two-form construction (thanks Saso), one can write a full non-linear action for this ...

[check the paper © ${ }^{-}$]

Solids and fluids are not different at the level of spacetime symmetries!
Their distinction is dynamical (related to the system under deformation) and topological (cf. relation with generalized global symmetries)

Order parameter : BURGERS VECTOR!

Let us compute it !

Baggioli, Kriuchevskyi,
Sirk, Zaccone 2021 [Arxiv tomorrow]

From MD simulations in solids and glasses

glass non - affine dynamics

Topological defects

 in glass deformations$$
b_{i} \equiv-\oint_{\mathcal{L}} d u_{i}=\oint_{\mathcal{L}} \frac{d u_{i}}{d x^{k}} d x^{k}
$$

Important correlations with plasticity and yielding

"perdersi in un bicchere d'acqua"

Maybe they were serious

Linearized hydrodynamics

$$
\begin{gathered}
\omega_{\text {diff }}\left(z \equiv \mathbf{q}^{2}\right)=-i \sum_{n=1}^{\infty} c_{n} z^{n} \\
\omega_{\text {sound }}^{ \pm}\left(z \equiv \sqrt{\mathbf{q}^{2}}\right)=-i \sum_{n=1}^{\infty} a_{n} e^{ \pm \frac{i \pi n}{2}} z^{n}
\end{gathered}
$$

As every effective theory, it is a perturbative (asymptotic) series

1) Is it convergent ?
2) If not, what is the radius of convergence?

Linearized hydrodynamic modes: $\quad F\left(\omega, k^{2}\right)=0$

$$
\begin{aligned}
& \text { Critical } \\
& \text { points } \\
& \text { for both } \omega_{c}, k_{c}^{2} \in \mathbb{C} \text {. }
\end{aligned}
$$

$$
\mathcal{R} \equiv\left|k_{c}\right|
$$

The radius of convergence is determined by the distance from the nearest critical point!

TELEGRAPHER EQUATION (Heaviside)

$$
\omega^{2}+i \omega / \tau-v^{2} k^{2}=0
$$

Several simulations and (few) experiments confirm this is a good description for shear waves in liquids

$$
\begin{gathered}
\omega=-\frac{i}{2 \tau} \pm \sqrt{v^{2} k^{2}-\frac{1}{4 \tau^{2}}} \\
\mathcal{R} \equiv\left|k_{c}\right|=\frac{1}{2 v \tau}=k_{g}
\end{gathered}
$$

COULOMB LIQUIDS

Viscosity/entropy ratio

Why a minimum?

Oscillatory motion
+

Diffusive jumps
$\eta=\eta_{0} \exp \left(\frac{U}{T}\right)$
$D \sim \tau^{-1} \sim \eta^{-1}$

Ballistic motion Viscosity comes from collisions

$$
\eta=\frac{1}{3} \rho v L
$$

$D \sim \eta \sim l_{m f p}$

A universal minimum

[Trachenko, Brazhkin, Sci.Advances 2020]

What about QGP ?

E / V	$1 \mathrm{GeV} / \mathrm{fm}^{3}[23]$
η	$5 \cdot 10^{11} \mathrm{~Pa} \cdot \mathrm{~s}[7]$
m_{p}	$1.67 \cdot 10^{-27} \mathrm{~kg}$
a_{p}	$0.84 \cdot 10^{-15} \mathrm{~m}$
a	$0.5 \cdot 10^{-15} \mathrm{~m}[24]$
T_{QGP}	$2 \cdot 10^{12} \mathrm{~K}[7]$

THE SHEAR VISCOSITY IS HUGE (COMPARABLE TO LIQUIDS
AT THE GLASS TRANSITION)
But the density is also huge!

$$
D=\frac{a_{p}^{2}}{\hbar} k_{\mathrm{B}} T_{\mathrm{QGP}}
$$

Compatible with the standard liquid formula and using the Planckian relaxation time!

It can be derived in several ways : (check the paper $\%$)

$$
\nu_{\mathrm{QGP}}^{e x p} \approx 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

I naturally want to be provocative.

Is it a good universal quantity ??

[One objection: away from neutral relativistic hydrodynamics It does not control anything]
[Reply-to-comment: it controls entropy production]
[Reply-to-Reply-to-comment: but only for a very specific external deformation]

Is it D (diffusion constant) better ??

1) also a minimum
2) also value of the minimum universal
3) approximately same value of diffusion of momentum (from theory we get exactly the same result)

Super-universality ??

For the Holographers in the audience

1) the specific heat of the holographic models grows with T
2) the viscosity grows with T

CONCLUSIONS

Facile come bere un bicchier d'acqua

Thanks To my collaborators

Thanksfor listening!

Matteo Baggioli (SJTU Shanghai)

