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• QFT at non-zero temperature is important, but can be very complicated. 

Especially if there is no quasiparticle or other perturbative description. 

• However, some aspects of the dynamics are relatively simple and general. 

Specifically, dynamics of conserved charge density operators over very long 
time and distance scales. 

• These dynamics are governed by simple effective theories: hydrodynamics. 

When are these effective theories valid? 

INTRODUCTION



HYDRODYNAMICS
• Assumption: local thermal equilibrium is achieved over large enough scales.  

             

The system can be described by its conserved charge densities. 

e.g. energy density , momentum density , U(1) density , etc 

• These each obey a local conservation equation:       etc. 

Currents are expressed as a gradient expansion of the densities 

e.g.                               

              Hydrodynamic equations      e.g.            

t ≫ τeq x ≫ leq

ε(t, x) ⃗Π(t, x) ρ(t, x)

∂tε + ∇ ⋅ jε = 0

jε = − D∇ε − D2 ∇3ε − …

∂tε = D∇2ε + D2 ∇4ε + …



• Expect this description to break down at short scales 

e.g. in a Fermi liquid    and so expect  

• If there are no quasiparticles, we would perhaps expect .  
Can we say anything more than this? 

• This talk: In some cases, local equilibration scales  and  are governed by 
                basic low energy properties of the state.  

τqp ∼ 1/T2 τeq ∼ 1/T2

τeq ∼ 1/T

τeq leq

BREAKDOWN OF HYDRODYNAMICS

t
τeq

hydrodynamics
complicated microscopic  

dynamics



• One way to define  and  is via properties of the hydrodynamic modes. 

e.g.                     

• Appear as poles of retarded Green’s functions of conserved charge densities

τeq leq

∂tε = D∇2ε + D2 ∇4ε + … ωhydro(k) = − iDk2 − iD2k4 + …

HYDRODYNAMIC MODES

Re( )ω

Im( )ω

k = 0 G−1
εε (ω, k) = 0

hydrodynamic mode(s)

non-hydrodynamic modes

∼ τ−1
eq



CONVERGENCE OF DISPERSION RELATIONS
• Another sensible definition:  is radius of convergence of the series   

                                        

• For complex , the dispersion relations have branch points at  . 
Radius of convergence is set by closest branch point to the origin: .

keq

ωhydro(k) = − i
∞

∑
i=1

Dnk2n

k k = kc
keq = |kc |

Re( )ω

Im( )ω

k = kc

The branch point appears as a  
collision of poles at (kc, ωc)ωc

Grozdanov et al (1904.01018), 
Grozdanov et al (1904.12862), 
…



EXAMPLE
• As a simple example, consider   

There are two poles with dispersion relations  

• One pole is hydrodynamic:       

The branch point at  sets its radius of convergence. 

G−1(ω, k) = ω2 + iωΓ − v2k2

ω±(k) = −
iΓ
2

± k2v2 −
Γ2

4

ωhydro(k) = − i
v2

Γ
k2 − i

v4

Γ3
k4 − 2i

v6

Γ5
k6 + …

k2 = k2
c = Γ2/(4v2)

Re( )ω

Im( )ω

ωc = − iΓ/2



SUMMARY
• I will use the location of pole collisions  to define equilibration scales 

                               and        

• We examined states governed by an AdS2 fixed point in the IR. 
In the low temperature limit 

                                                       

• An alternative way of looking at it:        .

(kc, ωc)

leq =
1

keq
=

1
|kc |

τeq =
1

ωeq
=

1
|ωc |

ωeq → 2πTΔ k2
eq →

ωeq

D
=

2πTΔ
D

D = ωeqk−2
eq

 : IR scaling dimensionΔ  : hydrodynamic diffusivityD



AdS2 FIXED POINTS
• Low temperature black brane solutions of  

• Scaling symmetry in time:  and  . 

• Similar IR fixed points arise in SYK models of strongly interacting fermions.

t → λt r → λ−1r

S = ∫ d4x −g (R − 2Λ + ℒmatter)

UV: asymptotically AdS4

ds2 = −
r2

L2
dt2 +

L2dr2

r2
+ L2

x (dx2
1 + dx2

2)

IR: AdS2 x R2

RG flow depends 
on details

Maldacena, Stanford, Yang (1606.01847), …



• Green’s function poles correspond to quasinormal modes of the spacetime. 

• There are three types: 

• I will ignore the UV modes from now on.

QUASINORMAL MODES

Re( )ω

Im( )ω

k = 0
hydrodynamic mode(s)

IR modes

∼ T

UV modes

∼ T0
∼ T

Son, Starinets (hep-th/0205051)



• The hydrodynamic mode(s) satisfy . 

Even with restrictions made so far, different states will have different 

✴ Number of hydrodynamic modes 
✴ Structure of dispersion relations:  or  
✴ Hydrodynamic coefficients (e.g. speed , diffusivity  etc.) 

• I am only going to talk about hydrodynamic 
diffusion modes i.e. 

ωhydro(k = 0) = 0

ω(k) = vk + … ω(k) = − iDk2 + …
v D

THE HYDRODYNAMIC MODES

Re( )ω

Im( )ω

diffusion mode

IR modes

∼ T
increasing Re(k)

ωhydro(k) = − iDk2 + …



• Simplest example: axion theory  

One hydrodynamic mode: diffusion of energy     

• Next simplest: RN-AdS4        

Four hydrodynamic modes: two pressure waves                   

                                             diffusion of temperature           

                                             diffusion of momentum           

ω(k) = − iDεk2 + …

ω(k) = ± vk + …

ω(k) = − iDTk2 + …

ω(k) = − iDΠk2 + …

EXAMPLES
ℒmatter = −

1
2

2

∑
i=1

∂μφi∂μφi φi = kLxi

ds2 = r2 (−f(r)dt2 + dx2
1 + dx2

2) +
dr2

r2f(r)
f(r) = 1 −

k2
L

2r2
− (1 −

k2
L

2r2
0 ) r3

0

r3

ℒmatter = −
1
4

FμνFμν At = μ (1 −
r0

r )
f(r) = 1 − (1 +

μ2

4r2
0 ) r3

0

r3
+

μ2r2
0

4r4

Andrade, Withers (1311.5157)



• The IR modes are associated to the AdS2 region of the spacetime. 

• Cut off the rest of the spacetime and do holography in AdS2. 

✴ Each IR operator has a dimension  that governs its Green’s function 

✴ The AdS2 spacetime has quasinormal modes at 

• The full spacetime inherits these modes in the limit of small  and .

Δ(k)

T k

THE INFRA-RED MODES

𝒢IR ∝ T2Δ(k)−1
Γ ( 1

2 − Δ(k)) Γ (Δ(k) − iω
2πT )

Γ ( 1
2 + Δ(k)) Γ (1 − Δ(k) − iω

2πT )

ωn(k) = − i2πT(n + Δ(k))

n = 0,1,2,…

Re( )ω

Im( )ω

2πTΔ

2πT

Faulkner et al (0907.2694)



• For the axion theory, the IR operator that couples to energy density  has 

• For RN-AdS4, the IR operators that couple to temperature  and momentum 
 perturbations have 

• More generally, expect a perturbation to couple to multiple IR operators.

ε

T
Π

EXAMPLES

ωn(0) = − i2πT(n + 2)

Δ(k) =
1
2 (1 + 9 + 8k2/k2

L)

ΔT(k) =
1
2 (1 + 5 + 8k2/μ2 + 4 1 + 4k2/μ2)

ωn(0) = − i2πT(n + 2)

ωn(0) = − i2πT(n + 1)ΔΠ(k) =
1
2 (1 + 5 + 8k2/μ2 − 4 1 + 4k2/μ2)

Edalati et al (1005.4075)



• In all three cases, the two longest-lived modes are 

• Be very naive: the modes will collide at 

                                 and              

assuming all corrections to dispersion relations are negligible for 

ωc = − i2πTΔ k2
c =

2πTΔ
D

k < kc

CARTOON OF POLE COLLISION

Re( )ω

Im( )ω

diffusion mode

longest lived IR mode

increasing Re(k)ωhydro(k) = − iDk2 + …

ω0(k) = − i2πTΔ + …



ACTUAL DISPERSION RELATIONS
• For , corrections to the dispersion relations are in fact parametrically 

small in the low  limit. 

e.g. axion theory  

• In the low  limit 

• Small corrections to the dispersion relation give a small imaginary part to  .

k < kc
T

T

kc
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0.0
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k/T

-Im (�)

2 � T

                                           ωeq → 2πTΔ k2
eq →

ωeq

D
=

2πTΔ
D

T = 10−3kL



• Can compute  perturbatively close to the expected collision point 

• In low  limit 

where  

                 no pole collision at real k

G−1
εε (ω, k)

T

BREAKDOWN OF HYDRODYNAMICS: AXION THEORY

ω = − i2πTΔ + δω k2 =
2πTΔ

D
+ δ(k2)

G−1
εε (ω, k) ∝ (Dδ(k2) − iδω)(1 − iτδω) − iλδω + …

τ =
9kL

32 6π2T2
λ =

3 3πT
2kL

100.9 101.0 101.1 101.2 101.3

2.005

2.010

2.015

2.020

k/T

-Im (�)

2 � T



LOCAL EQUILIBRATION SCALES: AXION THEORY
• There is a branch point located at 

                  

• Comparison to location of pole collision computed numerically:
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T/m

keq
2 D�

�eq
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�eq

2 � T

ωc = − i4πT 1 +
8 6πT

9kL
+ … ± i ( 213/4

33/4 ( πT
kL )

3/2

+ …) k2
c = 4

2
3

kLπT 1 −
4 6πT

9kL
+ … ± i ( 217/4

33/4 ( πT
kL )

3/2

+ …)

ωeq = 2πTΔ (1 +
8 6πT

9kL
+ …)

local equilibration scales

k2
eq =

ωeq

D (1 −
4 6πT

3kL
+ …)

T/kLT/kL



• Everything qualitatively the same for both modes of RN-AdS4 

LOCAL EQUILIBRATION SCALES: RN-ADS4
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T/�

�eq

2 � � T
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keq
2 D

�eq

diffusion of temperature perturbations
diffusion of momentum perturbations

                                           ωeq → 2πTΔ k2
eq →

ωeq

D
=

2πTΔ
D

consistent with Withers (1803.08058), Jansen & Pantelidou 
(2007.14418), Abassi & Tahery (2007.10024) 



• SYK model is a theory of  interacting fermions.  

At large  and strong coupling: low energy effective action is same as gravity 
in (nearly)-AdS2. 

• SYK chain model is a generalisation of this with spatial locality ( “AdS2xR” )                                 

There is one hydrodynamic mode: diffusion of energy. 

At strong coupling, may expect this to look like state with AdS2xR in the IR.

N

N

SYK CHAIN MODEL

H = iq/2
M−1

∑
x=0

∑
1 ≤ i1 < … < iq ≤ N

,

Ji1…iq,x χi1,x…χiq,x + ∑
1 ≤ i1 < … < iq/2 ≤ N
1 ≤ j1 < … < jq/2 ≤ N

J′ i1…iq/2 j1…jq/2,x χi1,x…χiq/2,x χj1,x+1…χjq/2,x+1 ,

Maldacena, Stanford, Yang (1606.01847), …

Gu, Stanford, Qi (1609.07832), …



•  can be calculated exactly in the limit  . 

At strong coupling 

• These are the IR modes of AdS2 with 

The breakdown of hydrodynamics is as in the holographic theories:

Gεε(ω, k) N ≫ q2 ≫ 1

SYK CHAIN MODEL

Gεε(ω, k) ∝
Γ ( 1

2 − h(k)) Γ (h(k) − iω
2πT )

Γ ( 1
2 + h(k)) Γ (1 − h(k) − iω

2πT )

Δ(k) = h =
1
2 (1 + 9 + 4γ (cos(k) − 1)) .

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

1.0

v

�eq

2 � � T

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

v

keq
2 D�

�eq
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Choi et al (2010.08558)



• Looked at (certain) states governed by an AdS2 fixed point in the IR. 

Simple relations between equilibration timescales and low energy properties 

• These simple relations are a consequence of two properties 

✴ Lifetime of longest-lived non-hydrodynamic mode set by  . 

✴ Corrections to the quadratic approximation to the hydrodynamic 
dispersion relation are parametrically small for  .

Δ

k < kc

SUMMARY

                                           ωeq → 2πTΔ k2
eq →

ωeq

D
=

2πTΔ
D



• Generalisations: 

✴ other AdS2 fixed points (reason to be confident, at least in some cases) 
✴ AdS2 with non-universal deformation 
✴ non-AdS2 fixed points (e.g. Lifshitz) 
✴ multiple diffusion modes in one Green’s function (e.g. complex SYK chain) 

• The “breakdown” of hydrodynamics: 

• Saturation of the bound  that follows from assumption that  
is set by an underlying effective light cone speed.

D ≲ ωeqk−2
eq ωeq /keq

OPEN QUESTIONS

see also Moitra, Sake, Trivedi (2005.00016)
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Hartman, Hartnoll, Mahajan (1706.00019)



THANK YOU!


