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INTRODUCTION

« QFT at non-zero temperature is important, but can be very complicated.

Especially if there is no quasiparticle or other perturbative description.

« However, some aspects of the dynamics are relatively simple and general.

Specifically, dynamics of conserved charge density operators over very long
time and distance scales.

« These dynamics are governed by simple effective theories: hydrodynamics.

When are these effective theories valid?



HYDRODYNAMICS

« Assumption: local thermal equilibrium is achieved over large enough scales.
t> 1, x> 1,
The system can be described by its conserved charge densities.

e.g. energy density &(¢, x), momentum density ﬁ(t, x), U(1) density p(t, x), etc

 These each obey a local conservation equation: de+ V -j. =0 etc

Currents are expressed as a gradient expansion of the densities

e.g. j.=—DVe—D,Ve— ...

» Hydrodynamic equations e.g. de=DV?e+ D,V + ...



BREAKDOWN OF HYDRODYNAMICS

 Expect this description to break down at short scales

complicated microscopic

dynamics hydrodynamics

| > 1

Teq

e.g. in a Fermi liquid 7z, ~ 1/ T* and so expect Tog ~ 1/ T?

» If there are no quasiparticles, we would perhaps expect 7,, ~ 1/T.
Can we say anything more than this?

» This talk: In some cases, local equilibration scales 7, and /,, are governed by

q
basic low energy properties of the state.



HYDRODYNAMIC MODES

- One way to define 7, and /,, is via properties of the hydrodynamic modes.

q

e.g. 0 =DVie+D,Vie+ ... ——  wpk) = — iDK* — iDk* + ...

« Appear as poles of retarded Green’s functions of conserved charge densities

—1 .
P G, (w,k)=0
hydrodynamic mode(s)
o »Re(w) |
—1
~Y Teq
o o
O v
non-hydrodynamic modes

Imv(a))



CONVERGENCE OF DISPERSION RELATIONS

- Another sensible definition: k,, is radius of convergence of the series

a)hydm(k) —_ lz an2n
i=1

» For complex £, the dispersion relations have branch points at k = k. .

Radius of convergence is set by closest branch point to the origin: k,, = | k| .

k=k

» Re(w)

The branch point appears as a
c collision of poles at (k., ®,.)

Grozdanov et al (1904.01018),
Grozdanov et al (1904.12862),




EXAMPLE

. As a simple example, consider G~ Xw, k) = 0?* + ol — v2k*

i [?
There are two poles with dispersion relations w, (k) = — 7 + \/ k2y? — T

2 4 6
e One pole is hydrodynamic: w, ;. (k) = — iv—k2 — iv—k4 — 2iv—k6 +
p y y ‘ hydro T 3 B e

The branch point at k? = kc2 = ['?/(4v?) sets its radius of convergence.

O »Re(w)

. Y > w,=—1172

Im(w)



SUMMARY

« I will use the location of pole collisions (k,, w,.) to define equilibration scales

1 1 q 1 1
g — T = an T,,=— =
! keq |kc| ! a)eq |a)c|

« We examined states governed by an AdS; fixed point in the IR.
In the low temperature limit

a)eq —> 27Z'TA keq > —
D D
A : IR scaling dimension D : hydrodynamic diffusivity
. . . - )
- An alternative way of looking atit: D = w, k, .



AdS; FIXED POINTS

« Low temperature black brane solutions of § = [d4x1 /=8 (R =2A+ Z ut1er)

UV: asymptotically AdS,

A

RG flow depends
on details

\4

IR: AdS; x R2

e r2d2 L2dr?
S __Et_l_ r2

+ L)%(a’xl2 + dxzz)

. Scaling symmetry in time: t = Atand r — 17 r.

« Similar IR fixed points arise in SYK models of strongly interacting fermions.
Maldacena, Stanford, Yang (1606.01847), ...



QUASINORMAL MODES

« Green’s function poles correspond to quasinormal modes of the spacetime.

e There are three types: Son, Starinets (hep-th/0205051)

hydrodynamic mode(s)

=0 O »Re(w) | N

@ ~T ~ TY
T I
‘ IR modes
O v
UV modes
O
O O
v v
Im(w)

« [ will ignore the UV modes from now on.



THE HYDRODYNAMIC MODES

» The hydrodynamic mode(s) satisty @y, ,.,(k = 0) = 0.
Even with restrictions made so far, different states will have different

* Number of hydrodynamic modes
* Structure of dispersion relations: w(k) = vk + ... or w(k) = — iDk* + ...
* Hydrodynamic coefficients (e.g. speed v, diffusivity D etc.)

diffusion mode

[ am only going to talk about hydrodynamic — @ > Re(w)
diffusion modes i.e.
increasing Re(k)
~ T
k) = — iDk? Y
a)hydm( )—_l +
v ‘ IR modes




EXAMPLES

| 2
e Simplest example: axion theory L atror = — > Z 0,9,0"p; @, = k; x
i=1

Andrade, Withers (1311.5157)

dr? ki k2 \ 7
ds® = r* (=f(Ndi® + dx? + dx? =l-—=-(1-=% | =
s? = r* (=f(ndt* + dx{ + dx;) + pre f(r) >

One hydrodynamic mode: diffusion of energy w(k) = — iD,k* + ...

1 v,
o Next simplest: RN-AdSs4 Z atier = — = F, " Ai=p| - =
4 r
2\ ,3 2.2
H " KT
rH=1—-{1+ +
1) ( 41’8) 3 4r
Four hydrodynamic modes: two pressure waves w(k) =xvk+ ...
diffusion of temperature w(k) = — iDTk2 + ...

diffusion of momentum w(k) = — iDyk* + ...



THE INFRA-RED MODES

« The IR modes are associated to the AdS, region of the spacetime.

 Cut off the rest of the spacetime and do holography in AdS,.

* Each IR operator has a dimension A(k) that governs its Green’s function

€ o T?A0-1 g <% B A(k)> I (A(k) _ %)

: r<§+A(k)>r(1—A(k)—’i)

2T

Faulkner et al (0907.2694)

* The AdS2 spacetime has quasinormal modes at

> Re(w)
w,(k) = — 22T (n + AK)) 2ETAI ®
=012, ¢ 1
Im(w)

o The full spacetime inherits these modes in the limit of small 7" and k.



EXAMPLES

« For the axion theory, the IR operator that couples to energy density ¢ has

A(k) = % (1 + \/ 9+ 8k2/kg> . »,(0) = — 22T(n + 2)

« For RN-AdS4, the IR operators that couple to temperature 7"and momentum

I1 perturbations have

1
Aqg(k) = (1 + \/ 5+ 8Kk2/u? + 4\/ 1 + 4k2/ﬂ2) » @,(0) = — 22T(n + 2)

1
Ap(k) = 5 (1 - \/ 5+ 8k*/u* — 4\/ 1+ 4k2//12) » w,(0)=—i2zT(n+ 1)

Edalati et al (1005.4075)

« More generally, expect a perturbation to couple to multiple IR operators.



CARTOON OF POLE COLLISION

e In all three cases, the two longest-lived modes are

diffusion mode
@ > Re(w)
a)hydl’o(k) —_ — le2 + ... increasing Re(k)
\
G)O(k) = — lQ,]Z'TA 4. ‘ longest lived IR mode
v
Im(w)

 Be very naive: the modes will collide at

2nTA
w, = —12nTA and k2 ED

assuming all corrections to dispersion relations are negligible for k < &,



ACTUAL DISPERSION RELATIONS

« For k < k_, corrections to the dispersion relations are in fact parametrically
small in the low T limit.

e.g. axion theory 2.52.
T = 10_3kL 2.0;

“Im@) st
2nT [

1.0f

0.5}

0.0L

e In the low T limit

a)eq B 27Z'TA

2
a)eq—>27rTA keq 5 5

 Small corrections to the dispersion relation give a small imaginary part to k. .



BREAKDOWN OF HYDRODYNAMICS: AXION THEORY

. Can compute G '(w, k) perturbatively close to the expected collision point

22TA
w = — 27TA + 5w k2 = ”D + 5k

o Inlow Tlimit G '(w, k) « (D5(k*) — ibw) (1 — itéw) — iléw + ...

% B 3\/§ xT

_ L
324/672T2 2k;

where T

» no pole collision at real k

2.015
-Im (w)




LOCAL EQUILIBRATION SCALES: AXION THEORY

 There is a branch point located at
Ry 8\ orT L 234 a\ 2= 4\/§k e 44/61T L 214/ pT\
w. = —14an + %k, + ... 33 <kL> + ... . = ELJZ’ — o, +...x1 W(}(—L) + ...

> local equilibration scales

81/62T o, /67T
w, =2aTA [ 1+ X% 4 2= ver
1 Ok, D 3k;

« Comparison to location of pole collision computed numerically:
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LOCAL EQUILIBRATION SCALES: RN-ADS,

* Everything qualitatively the same for both modes of RN-AdS4

consistent with Withers (1803.08058), Jansen & Pantelidou
(2007.14418), Abassi & Tahery (2007.10024)
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SYK CHAIN MODEL

« SYK model is a theory of N interacting fermions.

At large N and strong coupling: low energy effective action is same as gravity

in (near IY) -AdSo. Maldacena, Stanford, Yang (1606.01847), ...

« SYK chain model is a generalisation of this with spatial locality ( “AdS,xR”)

( )

M-1
— :q/2 /
H=i 2 Z Jil...iq,x)(il,x' : .)(iq’x * Z Jil'"iq/2j1°'~jq/2’x)(i1’x. : ')(iq/z,x)(jbx"‘l e .)(jq/27x+1 ’
x=0

1<i<..<iy<N 1<iy<..<ip <N

\ | = )
There is one hydrodynamic mode: diffusion of energy.

At strong coupling, may expect this to look like state with AdS,;xR in the IR.

Gu, Stanford, Qi (1609.07832), ...



SYK CHAIN MODEL

e G, .(w, k) can be calculated exactly in the limit N > g* > 1 . Choi et al (2010.08558)

At strong coupling r (% _ h(k)) r (h(k) 3 %>
G, . (0, k) x

r (% +h(k)> r (1 — h(k) ‘%)

|
 These are the IR modes of AdS, with A(k) = h = 5 (1 + \/9 + 4y (cos(k) — 1)) .

The breakdown of hydrodynamics is as in the holographic theories:
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SUMMARY

« Looked at (certain) states governed by an AdS; fixed point in the IR.

Simple relations between equilibration timescales and low energy properties

a)eq . 27Z'TA
D D

W,, = 27TA kezq >

* These simple relations are a consequence of two properties

* Lifetime of longest-lived non-hydrodynamic mode set by A .

* Corrections to the quadratic approximation to the hydrodynamic
dispersion relation are parametrically small for k < k. .



OPEN QUESTIONS

e Generalisations:

* other AdS; fixed points (reason to be confident, at least in some cases)

* AdS, with non-universal deformation

* non-AdS; fixed points (e.g. Lifshitz)

* multiple diffusion modes in one Green’s function (e.g. complex SYK chain)

» The “breakdown” of hydrodynamics:

see also Moitra, Sake, Trivedi (2005.00016)

« Saturation of the bound D < a)eqke_q2 that follows from assumption that w,/k,,

is set by an underlying effective light cone speed.

Hartman, Hartnoll, Mahajan (1706.00019)



THANK YOU!



