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weak fluctuations

Controlled EFT

m Slow thermalization of SU(2)
spin chains arXiv:2007.13753

with Glorioso Chen Nandkishore Lucas

m 'Diffuson cascade’

— 2
~ o~ VDEt

G(t, k) ~

arXiv:2006.01139

strong fluctuations

KPZ: w ~ ck — iDk3/2

m Edge modes in QH systems
PRL 124 (2020) with Paolo Glorioso

m 2d QFTs
w.i.p. using Hamiltonian truncation
with Fitzpatrick Katz Walters
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UNIVERSALITY OF HYDRODYNAMICS

Any thermalizing system, quantum or classical, is described by
hydrodynamics at sufficiently late times

How is such a universality possible?
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UNIVERSALITY OF HYDRODYNAMICS

Any thermalizing system, quantum or classical, is described by
hydrodynamics at sufficiently late times

How is such a universality possible?

Most excitations ‘relax’ at finite T' ~~ thermalization time 7,
Conserved densities j° related to symmetries decay with rate I’ ~ k2

For k small enough these are parametrically slower than generic
excitations

Hydrodynamics is the late time (¢ > 7n)
description of these ‘coarse grained’ quantities




How IT WORKS

Theory of a conserved density n = j° (or its potential 1), subject to
n+V-.j=0
This also involves j¢. Close the equation with a constitutive relation
ji=—DOm+ -
Solving these equations yields a diffusive Greens function

xDk?
Gonlr}) = = g+
«]

—iDk? o .




How IT WORKS

Theory of a conserved density n = j° (or its potential 1), subject to
n+V-.j=0
This also involves j¢. Close the equation with a constitutive relation
ji=—DOm+ -
Solving these equations yields a diffusive Greens function

xDk?
Gonl ) = =+

Two expansions: gradients d + 9 + - - and fluctuations én + dn? + - - -

— —

Always controlled Controlled when interactions
(in principle) are irrelevant
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How 1T WORKS 11

Theory of conserved densities €, 7; or their potentials T'(x), v;(z),

subject to é +V -5 =0, ;4057 = 0.
This also involves the currents j¢, 7;;
We again close the equations with constitutive relations

Solving around equilibrium v;(z) = 0+ 0v; and T'(xz) = T + 6T gives
kik; w? kik; Dk?
R v ilvg
k) ~ 51 —
G, (w0, ) k2 2k? — w? — iTk2w M ( TR? > —iw + Dk?
—_——

sound diffusion
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BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ick—%FkQ—&—---

W
° °
de orl
® 5t '
m heat m regular sound
m particle number m superfluid sound
m spin m Spin waves
.- m transverse sound
|



BALLISTIC V. DIFFUSIVE

= —iDk*> + w=+ck — 71‘k2

AL DR

Other possibilities, e.qg.:
m w = cksinf — iDk? (smectic, magnetohydrodynamics)
m w= +k? — ik? (nematic)
m w = +k? — ik* (spin waves in a ferromagnet)
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w=—iDk?+ - wzick—%l‘kz—&—---

I R

When are fluctuations big? Diffusive: when d <d,=0
0=n—-V[D(n)Vn]+---
= (8, — DV? = D'6nV? +---) én
~ k2~ K2 2

We need to know how charge fluctuations scale: scaling w ~ k2

2
e~ T /4Dt

(n(z,t)n) o —aE Sn ~o w4~ /2
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In the reference frame of the pulse 2’ = = — ¢t we again scale w’ ~ k2
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BALLISTIC V. DIFFUSIVE

w=—iDk?+ - wzick—%l‘kz—&—---

I R

When are fluctuations big? Ballistic: whend <d. =2

0=n+c(n)Vn— Dn)V3n+ -
= (0 +énV — DV? + ... ) én
~ k2 ~ k1+% ~ k2

In the reference frame of the pulse 2’ = = — ¢t we again scale w’ ~ k2

e—@'? /4Dt

(n(z',t)n) —am = Sn o /YA fd/2



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ick—%l“kg—&—---
Bottomline:
Diffusive modes Ballistic modes
Weak fluctuations d>0 d>2

Strong fluctuations never d<?2
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IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Ddn + Dnon + ---

Studied within theory of hydrodynamic fluctuations
Martin Siggia Rose '73, Forster Nelson Stephen '77

(long history
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IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Ddn + Dnon + ---

Studied within theory of hydrodynamic fluctuations
Martin Siggia Rose '73, Forster Nelson Stephen '77

(long history

)

Modern approach: path integral on a Schwinger-Keldysh contour

Kamenev '11, Grozdanov Polonyi '13, Crossley Glorioso Liu '15, Haehl Loganayagam Rangamani

'15, Jensen Pinzani-Fokeeva Yarom '17
Roughly: n ~ ¢t0p + ¢bottom

f ~ ¢top - ¢b0ttom

t = —oo t = 400
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IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Domn + D'ndn + -

For this talk, a simplified treatment of hydro fluctuations will be enough
to illustrate concepts Ernst Hauge van Leeuwen '70, Kovtun Yaffe '03

1
ow) = UMW k=0) = xD  + #|”? + w4
e -4 = -
Long-time tails
5
3 m Discovered in molecular dynamics numerics
5l Alder Wainwright '70
_%’5 0 05 m Seen in AdS/CFT Caron-Huot Saremi '09

Mukerjee Oganesyan Huse '05 m Recent interest for RHIC



ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18

2iw] =

Dk + - -- E(w,k)z(#iw+#k2)[k2—] ;

—iw + DEk2 + 3k2°

R —
Gnn(w7k) - D

w|

—>

Relativistic massive particle G(p?)

_ipg2 p?
2 . N
N m im*

—iDk ® MOAAAAAAS



ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18

xDk* + - - -

R _
Cunlw: k) = = S v

2] 7
S(w, k) = (Hiot+#52) [k2 - ]’;]
w]
—£DFk?
—iDk?

—>

]
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Two-'diffuson’ threshold: w, k
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ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18

xDk* + - - -

R _
Cunlw: k) = = S v

Y(w, k) = (Fiw+H#k?) [k:2 - 2]’;] N

]
/ /o .
W'k L = iDE™

Two-'diffuson’ threshold: w, k

w+w' =—iD(k+ k')?



ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18

xDk* + - - -

R _
Cunlw: k) = = S v

Y(w, k) = (Fiw+H#k?) [k:2 - 2]’3”] N

1 i
Gnn(t,xzo):(Dt)d/Q<1+td/2+...>



THERMALIZATION IN SPIN CHAINS

Thermalization and hydrodynamics of this model long debated

Srivastava Liu Viswanath Miiller '94, ... , Bagchi '13, Das Chakrabarty Dhar Kundu Huse
Moessner Ray Bhattacharjee '18, Gamayun Miao llievski '19

Recently revived by De Nardis Medenjak Karrasch llievski '20



THERMALIZATION IN SPIN CHAINS

Thermalization and hydrodynamics of this model long debated

Srivastava Liu Viswanath Miiller '94, ... , Bagchi '13, Das Chakrabarty Dhar Kundu Huse
Moessner Ray Bhattacharjee '18, Gamayun Miao llievski '19

Recently revived by De Nardis Medenjak Karrasch llievski '20

Hydrodynamic description:

Symmetry Conserved density
SU(2) n®(zx) ‘coarse grained’ S{, a = x,y, 2
time translation e(x) ‘coarse grained’ JS; - S L1

To leading order, all densities diffuse

efw2/4D\t| 1

<n“(x,t)nb>=5“bW = (57()57) ~




THERMALIZATION IN SPIN CHAINS

De Nardis Medenjak Karrasch llievski '20
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Slow thermalization... subdiffusion? C(t) ~ 1/(tlog™ t)'/?

Hydrodynamics really predicts

Clt)y=——=+ = =+ -

S R
RV Vi
with a ~ /Tt



THERMALIZATION IN SPIN CHAINS

De Nardis Medenjak Karrasch llievski '20

300
107!
250
. =200
= <}
O 1072 =15
100}~
103 , 50
100 10! 10? 10° 1 2 3 4 5 6 7
3 log(t)
o - 0.1
Slow thermalization... subdiffusion? S B=0
. B=02
Hydrodynamics really predicts 008 gf?f’
C(t) == -+ = - + N /
= © 0.06
_ ! <1 + 24 ) Moo ——— ’
vt Vi 0.04

. 0 0.1 0.2 0.3 0.4
with a ~ v/ Tth Glorioso LVD Chen Nandkishore Lucas '20 1/t



Diffuson cascade

©O)(th) = ==k
~ g(ta k) + kdg(ta %)2
- e~ Dkt + Ede—DE*t/2

1
For < t < —— , the first term dominates
TSt P2



Diffuson cascade

(00)(t,k) = === 4 = = g
~ g(t, k) + kK9t k) 4+
- e~ Dkt + Ede—DE*t/2 +

1
For < t < —— , the first term dominates
TSt P2

The n-diffuson contributions take the form

~ n! (keth)dn e7Dkzt/n

_ 1 _ DEk?t
At late times ——= <, the term that dominates have n(t) ~ | [ ————
DEk? dlog 77—

Plugging back gives (QO)(t, k) ~ e~ VDEt |




Diffuson cascade

(OO)t k)= == 4 = =y
~ g(t, k) + kK9t k) 4+
- e~ Dkt + Ede—DE*t/2 +

1

Formy St < , the first term dominates

~ Dk?
The n-diffuson contributions take the form

~ n (keth)dn e7D16215/n

_ 1 _ DEk?t
At late times ——= <, the term that dominates have n(t) ~ | [ ————
DEk? dlog 77—

Plugging back gives (OO)(t, k) ~ e~ VPF*t | LVD arXiv:2006.01139

At even later times kz‘ﬁ < t: breakdown of hydro! and w.i.p. with Xiao Chen




A RICHER STORY AT FINITE k

(0O)(t, k)
(log) A

uv

i ! >
Tih 1/Dk? 1/Dk2+2d t
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STRONG HYDRODYNAMIC FLUCTUATIONS

We found that hydrodynamic fluctuations were large (relevant) for
ballistic modes in 1+1d

)
=ck— Tk + .-
w=c 2 +

We will consider two situations where this occurs:

m Diffusion of U(1) charge with a chiral anomaly

m Translation invariance: 2d QFTs



THE ANOMALY

Single U(1) conserved charge like before, but with an anomaly

Ougt = VeaﬁFag or N+ Opjr = VE,
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BREAKDOWN OF DIFFUSION

‘Anomalous diffusion’ equation: (recall on ~ k%2 = k1/?)
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BREAKDOWN OF DIFFUSION

‘Anomalous diffusion’ equation: (recall on ~ k%2 = k1/?)
0 = n + eden — 0.(DIn) + nden +
~ k3/2 ~ k5/2 ~ k2

~~ breakdown of diffusion!

What to do?

m Dim reg: expand from upper critical dimension d. = 2.

Chiral diffusion
The theory at d. = 2 describes chiral surface metals

m Exact solution for d =17

Burger’s equation Forster Nelson Stephen '77, KPZ Kardar Parisi Zhang '86,
1d Navier-Stokes Narayan Ramaswamy '02



KPZ UNIVERSALITY ON THE EDGE

‘Anomalous diffusion’ equation:
0 = n + cdn — 0,(DIn) + ndn +

Follow chiral front: 2/ = 2 — ¢t, so 8y = 0; + cO,

0 = Oyn — 9.(DIn) + nden +
Map to KPZ equation n <+ 9, h Kardar Parisi Zhang '86
0 = O¢h — DFh + d(0.h)?* +

(the noise term also maps appropriately, as it must by fluctuation-dissipation)

Edge is in Burger's-KPZ universality, with z = 3/2 !



KPZ UNIVERSALITY ON THE EDGE

Collective mode disperses as

T
w=ck—iDk* 4 --- with D= —M|X’| and z:§
X3 2w 2

similar dispersion relations observed in 1d hydro Narayan Ramaswamy '02 Spohn '14
but these are not robust vs disorder Das Damle Dhar Huse Kulkarni Mendl Spohn '19
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KPZ UNIVERSALITY ON THE EDGE

Collective mode disperses as

T
w=ck—iDk* 4 --- with D= —M|x’| and z:§
X3 2w 2

similar dispersion relations observed in 1d hydro
but these are not robust vs disorder

Transport:

KPZ scaling function controls transport

T w—ck
Gn(w, k) = ngKPZ (Dkz> +--

and gives

4/3
o(w) = lim % ImGE (w, k) = #XD

k—0 k wl/3 o

(gkpz known to high precision, with # ~ 0.417816.. Prihofer and Spohn '04)



EXPERIMENTS

Singular edge transport: o(w) ~

Anomalous damping of edge modes:

w =~ ck — iDk>/? with




EXPERIMENTS

Singular edge transport: o(w) ~ —=

Anomalous damping of edge modes:

X7 |v|
x3 2w

w =~ ck — iDk>/? with

0.6

t=100/7 =20/J =307

02 04
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Injector

Ashoori Stormer Pfeiffer Baldwin West '92 Kumada Glattli et al '14 Goldman Spielman et al '13

GaAs Graphene Cold atoms



Experimental investigation of the damping of low-frequency edge magnetoplasmons
in GaAs-Al, Ga,_, As heterostructures

V. I. Talyanskii,* M. Y. Simmons, J. E. F. Frost, M. Pepper, D. A. Ritchie, A. C. Churchill,
and G. A. C. Jones
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 17 February 1994)

A detailed experimental study of damping and velocity of low-frequency edge magnetoplasmons in
GaAs-Al,Ga,_, As heterostructures is presented. The damping is observed to be frequency dependent
at filling factors close to integer values. The magnitude of the damping increases with frequency, the
dependence being somewhere between linear and quadratic. This finding indicates that the damping of
low-frequency edge magnetoplasmons cannot be described by the effective relaxation time. The experi-
mental results are discussed in terms of existing models of low-frequency edge magnetoplasmons.

Anomalous damping of edge modes:

X2T |v|

w =~ ck — iDk>/? with D=
x3 2w

0.6

t=10n/J t = 20h,
100

0.4

Detector

0.2
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0.0

-0.2

-0.4
S
o

10 15 20 25 30
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Ashoori Stormer Pfeiffer Baldwin West '92 Kumada Glattli et al '14 Goldman Spielman et al '13

GaAs Graphene Cold atoms
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EXPERIMENTS

Neutral heat mode is similar, except if ., = 0, like for v =2/3

w ~ —iDk5/3

‘Upstream’ heat transport

Bid Mahalu et al '10 Venkatachalam Hart Yacoby et al '12



HyYDRO IN 2D QFTSs

Translation invariance naturally leads to a ballistic mode
2d thermalizing QFTs will have KPZ dissipation

Can they be studied numerically without breaking translations?



HyYDRO IN 2D QFTSs

Translation invariance naturally leads to a ballistic mode
2d thermalizing QFTs will have KPZ dissipation

Can they be studied numerically without breaking translations?

~~ Lightcone Conformal Truncation w.i.p. with Fitzpatrick Katz Walters

_ 2 1 2 1 90 1.4
S—/de(a(j)) 5™ 10) 4!)\¢



HAMILTONIAN TRUNCATION IN A NUTSHELL

1 1 1
_ 2, 2 - 242 - 4
S—/dx2((9¢) 2m(b 4!)\¢
The UV is a free scalar theory
The two relevant deformations trigger a flow to the IR
Strategy:

m Build free theory Fock space |n) and truncate it npax
m Evaluate (n|Hiy|n') and diagonalize it

Pedagogical introduction: Anand Fitzpatrick Katz Khandker Walters Xin 2005.13544
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THERMAL PHASE DIAGRAM
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EQUATION OF STATE

The entropy density is that of a free scalar s = %we

Equation of state at A=1.58

s(e)/\/2mel3
071
06 —
Apax=
0.5 s e 45
04f . 40
03 — . © 35
F * 30
02f
o1f

Access thermal physics microcanonically by using highly excited states



CHAOS IN A 2D QFT

Some preliminary results:
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© BRIEF INTRO TO HYDRO

© WEAK FLUCTUATIONS A d>0
© STRONG FLUCTUATIONS mﬁ =1

Thanks!

LVD®uchicago.edu
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