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Motivation

• Understanding the corrections to the Stephan-Boltzmann law, if T is

not traceless

• The effects of CFT breaking: leading order correction if Lorenz

invariance is unbroken (no umklapp processes)

• Connecting holography and GHD results
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Overview

• Bipartition protocol and transport

• TT̄ deformed CFTs

• Integrability

• holography

• Integrability/GHD approach

• GHD overview

• NESS

• Energy/momentum Drude weights

• Diffusion constants

• Holographic approach

• NESS

• Drude weights
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Bipartition protocol

• Bipartition protocol: two sides prepared in different stationary states

ρ(0) = ρL ⊗ ρR

• Nonequilibrium steady state (NESS) forms along the light rays

ξ = x
t for large times t →∞:

lim
t→∞
〈o(ξt, t)〉 = 〈o(ξ)〉NESS

• What is NESS for TT̄ deformed CFTs if two boosted thermal states

ρL/R ∝ exp(−βL/RH + νL/RP) are joined?
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Transport coefficients

• Drude weight Dij , the Onsager coefficient L
(reg)
ij , and diffusion

constant Dij (response of the current ji to the charge qj )

σij (ω) = Dijδ(ω) + σ
(reg)
ij (ω), Lij = σ

(reg)
ij (0), Lij = DikC

k
j

• Linear response expressions

Dij = lim
t→∞

∫ t

−t

ds

2t

∫
R
dx〈ji (x , s)jj (0, 0)〉c

Lij =

∫
R
dt

(∫
R
dx〈ji (x , t)jj (0, 0)〉c − Dij

)
• From the bipartition protocol we can extract transport coefficients

by considering infinitesimal difference of chemical potentials

Dij = lim
t→∞

1

2t

∫
R dx 〈ji (x , t)〉δµj

δµj

Lij =

∫
R dt(

∫
R dx 〈ji (x , t)〉δµj

− Dij )

δµj
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Transport coefficients
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TT̄ deformation

• TT̄ deformation of the theory is obtained via the set of infinitesimal

changes

L(σ+δσ) = L(σ) +
δσ

2
detTµν

• The theory preserves Lorenz invariance. If we know the spectrum of

the undeformed theory, we can solve the deformed theory

F.A. Smirnov and A.B. Zamolodchikov, Nucl. Phys. B 915 (2017) 363

∂σEn(R, σ) = En(R, σ)∂REn(R, σ) +
1

R
P2

n (R)

• On the level of the S matrix the deformation is induced by the

multiplication by a phase factor

S (σ)(θ) = eiΣ(θ)S (0)(θ), Σ(θ) = −σp+(θ1)p−(θ2)

p±(θ) = ±M
2 e
±θ
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Deformed correspondence

• Gravity in 3d in radial coordinates (ρ-radius)

ds2 = `2 dρ

4ρ
+

(
g

(0)
αβ (xα)

ρ
+ g

(2)
αβ (xα) + ρg

(4)
αβ (xα)

)
dxαdxβ

(g (4) is related to g (2))

• Undeformed case asympthotically (ρ→ 0): g (2) = 8πG`T̂ and

g (0) = γ0

• There is a nonlinear connection between the deformed and

undeformed stress energy tensor and metric which gives us

γµ = g (0) + µg (2) + µ2g (4)

T̂µ =
1

8πG`
(g (2) + 2µg (4))

with µ = − cσ
12π`2 and T̂αβ = Tαβ − γαβT γ

γ . γµ is exactly the

induced metric at ρ = µ.

M Guica, R Monten - arXiv preprint arXiv:1906.11251

L. McGough, M. Mezei and H. Verlinde, JHEP 04 (2018) 010
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Deformed correspondence

CFT in flat metric

ds2 = `2 dρ
2

4ρ2
+

dudv

ρ
+ L(u) du2 + L̄(v) dv2 + ρL(u)L̄(v) dudv .

Deformed metric at the boundary γµ = dUdV is flat in new coordinates

U = u + µ

∫ v

L̄(v ′)dv ′ , V = v + µ

∫ u

L(u′)du′

where L and L̄ are constant for a BTZ black hole and correspond to the

finite temperature and momentum in the deformed CFT:

β =
π`

2

(
1√
L̄

+
1√
L

)
(1− µ

√
LL̄), ν =

L − L̄
L+ L̄

Inverting the coordinate transformation and using the connection:

Ttt =
1

8πG`

L+ L̄ − 2µLL̄
1− µ2LL̄

Txt =
1

8πG`

L − L̄
1− µ2LL̄

Txx =
1

8πG`

L+ L̄+ 2µLL̄
1− µ2LL̄ 8



Euler scale hydrodynamics

• We assume a separation of time scales (systems equilibrate locally).

If we consider Euler (ballistic) scales ξ = x
t , limt→∞, then the

expectation values of local observables depend only on modulation

of chemical potentials

ōi (x , t) = lim
`→∞
〈o(`x , `t)〉 = 〈o〉{βi (x,t)}

• This implies that the dynamics of charges is governed purely by the

set of continuity equation

∂t q̄i (x , t) + ∂x j̄i (x , t) = 0

since ōi (x , t) depend only on the set of {βi (x , t)}, or equivalently

q̄i (x , t). Generalized hydrodynamics → a prescription how to obtain

averages of currents.
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Thermodynamics of integrable systems

• In order to obtain j̄i (x , t) we need to discern the expectation values

of currents and charges in ρ.

• Integrable systems have a stable quasi-particle structure. Upon

scattering the set of momenta is preserved, and particles undergo

phase shifts. Thermodynamics is governed by pseudoenergy ε(θ) (θ

is a rapidity variable)

ε(θ) = w(θ) +

∫
dθ′T (θ, θ′)L(ε(θ′))

w(θ) =
∑
βihi (θ)–source term (ρ ∼ exp(

∑
βiQi )), T (θ, θ′)–two

body phase shift, hi (θ) the amount of charge qi carried by the

quasiparticle θ, L(ε)–free energy function (fermions:

L = − log(1 + exp(−ε)))

• Free energy f and occupation function n(p)

f = −
∫

dθ

2π
p′(θ)L(ε) n(p) =

dL(ε)

dε
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GHD: Currents and charges

• Expectation value of conserved charge qi can of-course be obtained

by taking the derivative of f wrt βi

qi =

∫
dp

2π
n(p)hdr

i (p) =

∫
dp

2π
ρp(p)hi (p); hdr

i (p) =
∂ε(p)

∂βi

• Intuition: relativistic QFT’s crossing symmetry → currents ↔
charges, exchange of energy and momentum

j i =

∫
dp

2π
E ′(p)n(p)hdr

i (p) =

∫
dpv eff (p)ρp(p)hi (p)

• GHD equation

∂tρp(p, x , t) + ∂x (v eff (p, x , t)ρp(p, x , t)) = 0

O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).

B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).
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NESS in TT -deformed CFT

• We consider ρ ∼ exp(−βH + νP). TT̄ deformation induces the L-R

scattering T̃±∓(θ, θ′) = −σp+(θ)p−(θ′)/(2π) = two body phase

shift

ε±(θ) = β±E±(θ)− T ? L±(θ)− T̃±∓ ? L∓(θ),

• Surprisingly v eff
± does not depend on θ and simply reads

v eff
± =

±1 + σ(ρ+ − ρ−)

1 + σ(ρ+ + ρ−)
,

where ρ± energy densities associated with the L/R movers.

• Hydrodynamics is governed simply by two coupled equations

∂tρ± + ∂x (v eff
± ρ±) = 0.

• Solution (eRL = 1/(1−
(
πσc
12

)2
T̃ 2

L T̃
2
R ))

〈jE 〉NESS =
πc

12
eRL

(
T̃ 2

L − T̃ 2
R

)
,

〈jP〉NESS =
πc

12
eRL

(
T̃ 2

L + T̃ 2
R −

πcσ

6
T̃ 2

L T̃
2
R

)
Similar to CFTs, but no chiral separation 〈j〉NESS 6= f (βL)− f (βR )
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NESS corresponds to the thermal state with effective temperature

T =
√
TLTR with the boost tanh ν = (βL−βR )

(βL+βR )

NESS has the same form as in the CFT case (velocity in CFT is ±1)

13



Transport coefficients

• Momentum and energy Drude weights are simple functions of energy

density and pressure

(general expression: E. Ilievski and J. De Nardis Phys. Rev. Lett. 119, 020602)

DEE =
e + p

β
=

πc

3vc
T 3, DPP =

(p
e

)2

DEE =
πcvc

3
T 3

and can be expressed in terms of the effective velocity

v eff =

√
1− πσcT 2

3
.

• These results are generalizations of CFT results which can be

obtained by v eff → 1

• TT̄ deformation induces diffusion (energy diffusion is absent

because of Lorenz invariance)

(general expression: J. De Nardis, D. Bernard, and B. Doyon Phys. Rev. Lett. 121, 160603)

LPP =
σ2

2
vcD

2
EE =

σ2

2

D2
PP

v3
c
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TT -deformed CFT and RCA 54

• Euler scale hydrodynamics matches exactly the hydrodynamics of

RCA 54 A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall, CMP 158, 127 (1993).

∂tρ± + ∂x (v eff
± ρ±) = 0.

A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, Phys. Rev. Lett. 123, 170603 (2019)

K. Klobas, M. Medenjak, T. Prosen, M. Vanicat CMP 371, 651–688 (2019) 15



Holographic solution

• Bipartition protocol is solved by joining the two solutions at time

t = 0 (done in CFT by M. J. Bhaseen, B. Doyon, A. Lucas, K. Schalm Nature Physics 11, 509–514(2015))

L(u) = LLθ(−u) + LRθ(u) L̄(v) = L̄Lθ(−v) + L̄Rθ(v)

This means that NESS comprises two shock waves at u = 0 and

v = 0. The coordinate transformation can be solved exactly

x = −1 + µL̄L

1− µL̄L

t x =
1 + µLR

1− µLR
t

• NESS current is

〈jE 〉NESS =
1

8πG`

LL − LR

1− µ2LLLR

〈jP〉NESS =
1

8πG`

LL + LR + 2µLLLR

1− µ2LLLR

• We can reproduce the integrability result by identifying

√
L =

β
(√

4π2l2µ
β2 + 1− 1

)
2πlµ

=
π`

β̃±(β, 0) 16



Holographic approach

• The results hold at all orders in the deformation parameter

• No diffusion: while Onsager coefficient is finite, the broadening of

the fronts is governed by diffusion. In holography diffusion is

suppressed since D = 1
C L and C ∝ c

• Momentum diffusion can be obtained in the leading order σ2 also via

the conformal perturbation theory, and agrees with the integrability

calculation
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Overview and Outlook

• Nonperturbative test of the deformed holographic correspondence

• Perfect agreement between holographic and integrable CFTs →
Universal results

• Generalization to other deformations/GGEs/quantities

(entanglement, operator spreading,...)

• Exact relation to cellular automata
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