$T \bar{T}$-deformed CFTs out of equilibrium

M. Medenjak, G. Policastro, T. Yoshimura, arXiv:2011.05827, arXiv:2010.15813

Marko Medenjak, École Normale Supérieure
December 3, 2020

Motivation

- Understanding the corrections to the Stephan-Boltzmann law, if T is not traceless
- The effects of CFT breaking: leading order correction if Lorenz invariance is unbroken (no umklapp processes)
- Connecting holography and GHD results

Overview

- Bipartition protocol and transport
- $T \bar{T}$ deformed CFTs
- Integrability
- holography
- Integrability/GHD approach
- GHD overview
- NESS
- Energy/momentum Drude weights
- Diffusion constants
- Holographic approach
- NESS
- Drude weights

Bipartition protocol

- Bipartition protocol: two sides prepared in different stationary states

$$
\rho(0)=\rho_{L} \otimes \rho_{R}
$$

- Nonequilibrium steady state (NESS) forms along the light rays $\xi=\frac{x}{t}$ for large times $t \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty}\langle o(\xi t, t)\rangle=\langle o(\xi)\rangle_{\text {NESS }}
$$

- What is NESS for $T \bar{T}$ deformed CFTs if two boosted thermal states $\rho_{L / R} \propto \exp \left(-\beta_{L / R} H+\nu_{L / R} P\right)$ are joined?

Transport coefficients

- Drude weight $D_{i j}$, the Onsager coefficient $\mathfrak{L}_{i j}^{(\text {reg })}$, and diffusion constant $\mathcal{D}_{i j}$ (response of the current j_{i} to the charge q_{j})

$$
\sigma_{i j}(\omega)=D_{i j} \delta(\omega)+\sigma_{i j}^{(\text {reg })}(\omega), \quad \mathfrak{L}_{i j}=\sigma_{i j}^{(\text {reg })}(0), \quad \mathfrak{L}_{i j}=\mathfrak{D}_{i k} C_{j}^{k}
$$

- Linear response expressions

$$
\begin{aligned}
& D_{i j}=\lim _{t \rightarrow \infty} \int_{-t}^{t} \frac{\mathrm{~d} s}{2 t} \int_{\mathbb{R}} \mathrm{d} x\left\langle j_{i}(x, s) j_{j}(0,0)\right\rangle^{c} \\
& \mathfrak{L}_{i j}=\int_{\mathbb{R}} \mathrm{d} t\left(\int_{\mathbb{R}} \mathrm{d} x\left\langle j_{i}(x, t) j_{j}(0,0)\right\rangle^{c}-D_{i j}\right)
\end{aligned}
$$

- From the bipartition protocol we can extract transport coefficients by considering infinitesimal difference of chemical potentials

$$
\begin{gathered}
D_{i j}=\lim _{t \rightarrow \infty} \frac{1}{2 t} \frac{\int_{\mathbb{R}} \mathrm{d} x\left\langle j_{i}(x, t)\right\rangle_{\delta \mu_{j}}}{\delta \mu_{j}} \\
\mathfrak{L}_{i j}=\frac{\int_{\mathbb{R}} \mathrm{d} t\left(\int_{\mathbb{R}} \mathrm{d} x\left\langle j_{i}(x, t)\right\rangle_{\delta \mu_{j}}-D_{i j}\right)}{\delta \mu_{j}}
\end{gathered}
$$

Transport coefficients

$T \bar{T}$ deformation

- $T \bar{T}$ deformation of the theory is obtained via the set of infinitesimal changes

$$
\mathcal{L}^{(\sigma+\delta \sigma)}=\mathcal{L}^{(\sigma)}+\frac{\delta \sigma}{2} \operatorname{det} T_{\mu \nu}
$$

- The theory preserves Lorenz invariance. If we know the spectrum of the undeformed theory, we can solve the deformed theory
F.A. Smirnov and A.B. Zamolodchikov, Nucl. Phys. B 915 (2017) 363

$$
\partial_{\sigma} E_{n}(R, \sigma)=E_{n}(R, \sigma) \partial_{R} E_{n}(R, \sigma)+\frac{1}{R} P_{n}^{2}(R)
$$

- On the level of the S matrix the deformation is induced by the multiplication by a phase factor

$$
\begin{aligned}
& \quad S^{(\sigma)}(\theta)=e^{\mathrm{i} \Sigma(\theta)} S^{(0)}(\theta), \quad \Sigma(\theta)=-\sigma p_{+}\left(\theta_{1}\right) p_{-}\left(\theta_{2}\right) \\
& p_{ \pm}(\theta)= \pm \frac{M}{2} e^{ \pm \theta}
\end{aligned}
$$

Deformed correspondence

- Gravity in 3d in radial coordinates (ρ-radius)

$$
d s^{2}=\ell^{2} \frac{\mathrm{~d} \rho}{4 \rho}+\left(\frac{g_{\alpha \beta}^{(0)}\left(x^{\alpha}\right)}{\rho}+g_{\alpha \beta}^{(2)}\left(x^{\alpha}\right)+\rho g_{\alpha \beta}^{(4)}\left(x^{\alpha}\right)\right) d x^{\alpha} d x^{\beta}
$$

($g^{(4)}$ is related to $g^{(2)}$)

- Undeformed case asympthotically $(\rho \rightarrow 0): g^{(2)}=8 \pi G \ell \hat{T}$ and $g^{(0)}=\gamma_{0}$
- There is a nonlinear connection between the deformed and undeformed stress energy tensor and metric which gives us

$$
\begin{aligned}
& \gamma_{\mu}=g^{(0)}+\mu g^{(2)}+\mu^{2} g^{(4)} \\
& \hat{T}_{\mu}=\frac{1}{8 \pi G \ell}\left(g^{(2)}+2 \mu g^{(4)}\right)
\end{aligned}
$$

with $\mu=-\frac{c \sigma}{12 \pi \ell^{2}}$ and $\hat{T}_{\alpha \beta}=T_{\alpha \beta}-\gamma_{\alpha \beta} T_{\gamma}^{\gamma} . \gamma_{\mu}$ is exactly the induced metric at $\rho=\mu$.

Deformed correspondence

CFT in flat metric

$$
d s^{2}=\ell^{2} \frac{d \rho^{2}}{4 \rho^{2}}+\frac{d u d v}{\rho}+\mathcal{L}(u) d u^{2}+\overline{\mathcal{L}}(v) d v^{2}+\rho \mathcal{L}(u) \overline{\mathcal{L}}(v) d u d v .
$$

Deformed metric at the boundary $\gamma_{\mu}=d U d V$ is flat in new coordinates

$$
U=u+\mu \int^{v} \overline{\mathcal{L}}\left(v^{\prime}\right) d v^{\prime}, \quad V=v+\mu \int^{u} \mathcal{L}\left(u^{\prime}\right) d u^{\prime}
$$

where \mathcal{L} and $\overline{\mathcal{L}}$ are constant for a BTZ black hole and correspond to the finite temperature and momentum in the deformed CFT:

$$
\beta=\frac{\pi \ell}{2}\left(\frac{1}{\sqrt{\overline{\mathcal{L}}}}+\frac{1}{\sqrt{\mathcal{L}}}\right)(1-\mu \sqrt{\mathcal{L} \overline{\mathcal{L}}}), \quad \nu=\frac{\mathcal{L}-\overline{\mathcal{L}}}{\mathcal{L}+\overline{\mathcal{L}}}
$$

Inverting the coordinate transformation and using the connection:

$$
\begin{gathered}
T_{t t}=\frac{1}{8 \pi G \ell} \frac{\mathcal{L}+\overline{\mathcal{L}}-2 \mu \mathcal{L} \overline{\mathcal{L}}}{1-\mu^{2} \mathcal{L} \mathcal{L}} T_{x t}=\frac{1}{8 \pi G \ell} \frac{\mathcal{L}-\overline{\mathcal{L}}}{1-\mu^{2} \mathcal{L} \overline{\mathcal{L}}} \\
T_{x x}=\frac{1}{8 \pi G \ell} \frac{\mathcal{L}+\overline{\mathcal{L}}+2 \mu \mathcal{L} \overline{\mathcal{L}}}{1-\mu^{2} \mathcal{L} \overline{\mathcal{L}}}
\end{gathered}
$$

Euler scale hydrodynamics

- We assume a separation of time scales (systems equilibrate locally). If we consider Euler (ballistic) scales $\xi=\frac{x}{t}, \lim _{t \rightarrow \infty}$, then the expectation values of local observables depend only on modulation of chemical potentials

$$
\bar{o}_{i}(x, t)=\lim _{\ell \rightarrow \infty}\langle o(\ell x, \ell t)\rangle=\langle o\rangle_{\left\{\beta_{i}(x, t)\right\}}
$$

- This implies that the dynamics of charges is governed purely by the set of continuity equation

$$
\partial_{t} \bar{q}_{i}(x, t)+\partial_{x} \bar{j}_{i}(x, t)=0
$$

since $\bar{o}_{i}(x, t)$ depend only on the set of $\left\{\beta_{i}(x, t)\right\}$, or equivalently $\bar{q}_{i}(x, t)$. Generalized hydrodynamics \rightarrow a prescription how to obtain averages of currents.

Thermodynamics of integrable systems

- In order to obtain $\bar{j}_{i}(x, t)$ we need to discern the expectation values of currents and charges in ρ.

Thermodynamics of integrable systems

- In order to obtain $\bar{j}_{i}(x, t)$ we need to discern the expectation values of currents and charges in ρ.
- Integrable systems have a stable quasi-particle structure. Upon scattering the set of momenta is preserved, and particles undergo phase shifts. Thermodynamics is governed by pseudoenergy $\varepsilon(\theta)(\theta$ is a rapidity variable)

$$
\varepsilon(\theta)=w(\theta)+\int \mathrm{d} \theta^{\prime} T\left(\theta, \theta^{\prime}\right) L\left(\varepsilon\left(\theta^{\prime}\right)\right)
$$

$w(\theta)=\sum \beta^{i} h_{i}(\theta)$-source term $\left(\rho \sim \exp \left(\sum \beta^{i} Q_{i}\right)\right), T\left(\theta, \theta^{\prime}\right)$-two body phase shift, $h_{i}(\theta)$ the amount of charge q_{i} carried by the quasiparticle $\theta, L(\varepsilon)$-free energy function (fermions:
$L=-\log (1+\exp (-\varepsilon)))$

Thermodynamics of integrable systems

- In order to obtain $\bar{j}_{i}(x, t)$ we need to discern the expectation values of currents and charges in ρ.
- Integrable systems have a stable quasi-particle structure. Upon scattering the set of momenta is preserved, and particles undergo phase shifts. Thermodynamics is governed by pseudoenergy $\varepsilon(\theta)(\theta$ is a rapidity variable)

$$
\varepsilon(\theta)=w(\theta)+\int \mathrm{d} \theta^{\prime} T\left(\theta, \theta^{\prime}\right) L\left(\varepsilon\left(\theta^{\prime}\right)\right)
$$

$w(\theta)=\sum \beta^{i} h_{i}(\theta)$-source term $\left(\rho \sim \exp \left(\sum \beta^{i} Q_{i}\right)\right), T\left(\theta, \theta^{\prime}\right)$-two body phase shift, $h_{i}(\theta)$ the amount of charge q_{i} carried by the quasiparticle $\theta, L(\varepsilon)$-free energy function (fermions:
$L=-\log (1+\exp (-\varepsilon)))$

- Free energy f and occupation function $n(p)$

$$
f=-\int \frac{\mathrm{d} \theta}{2 \pi} p^{\prime}(\theta) L(\varepsilon) \quad n(p)=\frac{\mathrm{d} L(\epsilon)}{\mathrm{d} \varepsilon}
$$

GHD: Currents and charges

- Expectation value of conserved charge \bar{q}_{i} can of-course be obtained by taking the derivative of f wrt β_{i}

$$
\bar{q}_{i}=\int \frac{\mathrm{d} p}{2 \pi} n(p) h_{i}^{d r}(p)=\int \frac{\mathrm{d} p}{2 \pi} \rho_{p}(p) h_{i}(p) ; \quad h_{i}^{d r}(p)=\frac{\partial \epsilon(p)}{\partial \beta_{i}}
$$

[^0]
GHD: Currents and charges

- Expectation value of conserved charge \bar{q}_{i} can of-course be obtained by taking the derivative of f wrt β_{i}

$$
\bar{q}_{i}=\int \frac{\mathrm{d} p}{2 \pi} n(p) h_{i}^{d r}(p)=\int \frac{\mathrm{d} p}{2 \pi} \rho_{\rho}(p) h_{i}(p) ; \quad h_{i}^{d r}(p)=\frac{\partial \epsilon(p)}{\partial \beta_{i}}
$$

- Intuition: relativistic QFT's crossing symmetry \rightarrow currents \leftrightarrow charges, exchange of energy and momentum

$$
\bar{j}_{i}=\int \frac{\mathrm{d} p}{2 \pi} E^{\prime}(p) n(p) h_{i}^{\mathrm{dr}}(p)=\int \mathrm{d} p v^{\text {eff }}(p) \rho_{\rho}(p) h_{i}(p)
$$

GHD: Currents and charges

- Expectation value of conserved charge \bar{q}_{i} can of-course be obtained by taking the derivative of f wrt β_{i}

$$
\bar{q}_{i}=\int \frac{\mathrm{d} p}{2 \pi} n(p) h_{i}^{d r}(p)=\int \frac{\mathrm{d} p}{2 \pi} \rho_{\rho}(p) h_{i}(p) ; \quad h_{i}^{d r}(p)=\frac{\partial \epsilon(p)}{\partial \beta_{i}}
$$

- Intuition: relativistic QFT's crossing symmetry \rightarrow currents \leftrightarrow charges, exchange of energy and momentum

$$
\bar{j}_{i}=\int \frac{\mathrm{d} p}{2 \pi} E^{\prime}(p) n(p) h_{i}^{d r}(p)=\int \mathrm{d} p v^{e f f}(p) \rho_{\rho}(p) h_{i}(p)
$$

- GHD equation

$$
\partial_{t} \rho_{p}(p, x, t)+\partial_{x}\left(v^{\text {eff }}(p, x, t) \rho_{p}(p, x, t)\right)=0
$$

O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).
B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).

NESS in $T \bar{T}$-deformed CFT

- We consider $\rho \sim \exp (-\beta H+\nu P)$. $T \bar{T}$ deformation induces the L-R scattering $\tilde{T}_{ \pm \mp}\left(\theta, \theta^{\prime}\right)=-\sigma p_{+}(\theta) p_{-}\left(\theta^{\prime}\right) /(2 \pi)=$ two body phase shift

$$
\varepsilon_{ \pm}(\theta)=\beta_{ \pm} E_{ \pm}(\theta)-T \star L_{ \pm}(\theta)-\tilde{T}_{ \pm \mp} \star L_{\mp}(\theta)
$$

NESS in $T \bar{T}$-deformed CFT

- We consider $\rho \sim \exp (-\beta H+\nu P)$. $T \bar{T}$ deformation induces the L-R scattering $\tilde{T}_{ \pm \mp}\left(\theta, \theta^{\prime}\right)=-\sigma p_{+}(\theta) p_{-}\left(\theta^{\prime}\right) /(2 \pi)=$ two body phase shift

$$
\varepsilon_{ \pm}(\theta)=\beta_{ \pm} E_{ \pm}(\theta)-T \star L_{ \pm}(\theta)-\tilde{T}_{ \pm \mp} \star L_{\mp}(\theta)
$$

- Surprisingly $v_{ \pm}^{\text {eff }}$ does not depend on θ and simply reads

$$
v_{ \pm}^{e f f}=\frac{ \pm 1+\sigma\left(\rho_{+}-\rho_{-}\right)}{1+\sigma\left(\rho_{+}+\rho_{-}\right)}
$$

where $\rho_{ \pm}$energy densities associated with the L / R movers.

NESS in $T \bar{T}$-deformed CFT

- We consider $\rho \sim \exp (-\beta H+\nu P)$. $T \bar{T}$ deformation induces the L-R scattering $\tilde{T}_{ \pm \mp}\left(\theta, \theta^{\prime}\right)=-\sigma p_{+}(\theta) p_{-}\left(\theta^{\prime}\right) /(2 \pi)=$ two body phase shift

$$
\varepsilon_{ \pm}(\theta)=\beta_{ \pm} E_{ \pm}(\theta)-T \star L_{ \pm}(\theta)-\tilde{T}_{ \pm \mp} \star L_{\mp}(\theta)
$$

- Surprisingly $v_{ \pm}^{\text {eff }}$ does not depend on θ and simply reads

$$
v_{ \pm}^{\text {eff }}=\frac{ \pm 1+\sigma\left(\rho_{+}-\rho_{-}\right)}{1+\sigma\left(\rho_{+}+\rho_{-}\right)},
$$

where $\rho_{ \pm}$energy densities associated with the L / R movers.

- Hydrodynamics is governed simply by two coupled equations

$$
\partial_{t} \rho_{ \pm}+\partial_{x}\left(v_{ \pm}^{\text {eff }} \rho_{ \pm}\right)=0
$$

NESS in $T \bar{T}$-deformed CFT

- We consider $\rho \sim \exp (-\beta H+\nu P)$. $T \bar{T}$ deformation induces the L-R scattering $\tilde{T}_{ \pm \mp}\left(\theta, \theta^{\prime}\right)=-\sigma p_{+}(\theta) p_{-}\left(\theta^{\prime}\right) /(2 \pi)=$ two body phase shift

$$
\varepsilon_{ \pm}(\theta)=\beta_{ \pm} E_{ \pm}(\theta)-T \star L_{ \pm}(\theta)-\tilde{T}_{ \pm \mp} \star L_{\mp}(\theta)
$$

- Surprisingly $v_{ \pm}^{\text {eff }}$ does not depend on θ and simply reads

$$
v_{ \pm}^{\text {eff }}=\frac{ \pm 1+\sigma\left(\rho_{+}-\rho_{-}\right)}{1+\sigma\left(\rho_{+}+\rho_{-}\right)}
$$

where $\rho_{ \pm}$energy densities associated with the L / R movers.

- Hydrodynamics is governed simply by two coupled equations

$$
\partial_{t} \rho_{ \pm}+\partial_{x}\left(v_{ \pm}^{\text {eff }} \rho_{ \pm}\right)=0
$$

- Solution $\left(e_{R L}=1 /\left(1-\left(\frac{\pi \sigma c}{12}\right)^{2} \tilde{T}_{L}^{2} \tilde{T}_{R}^{2}\right)\right)$

$$
\begin{aligned}
\left\langle j_{E}\right\rangle_{\mathrm{NESS}} & =\frac{\pi c}{12} e_{R L}\left(\tilde{T}_{L}^{2}-\tilde{T}_{R}^{2}\right), \\
\left\langle j_{P}\right\rangle_{\mathrm{NESS}} & =\frac{\pi c}{12} e_{R L}\left(\tilde{T}_{L}^{2}+\tilde{T}_{R}^{2}-\frac{\pi c \sigma}{6} \tilde{T}_{L}^{2} \tilde{T}_{R}^{2}\right)
\end{aligned}
$$

Similar to CFTs, but no chiral separation $\langle j\rangle_{\mathrm{NESS}} \neq f\left(\beta_{L}\right)-f\left(\beta_{R}\right)$

NESS corresponds to the thermal state with effective temperature $T=\sqrt{T_{L} T_{R}}$ with the boost $\tanh \nu=\frac{\left(\beta_{L}-\beta_{R}\right)}{\left(\beta_{L}+\beta_{R}\right)}$

NESS has the same form as in the CFT case (velocity in CFT is ± 1)

Transport coefficients

- Momentum and energy Drude weights are simple functions of energy density and pressure
(general expression: E. Ilievski and J. De Nardis Phys. Rev. Lett. 119, 020602)

$$
D_{E E}=\frac{\mathrm{e}+\mathrm{p}}{\beta}=\frac{\pi c}{3 v_{c}} T^{3}, D_{P P}=\left(\frac{\mathrm{p}}{\mathrm{e}}\right)^{2} D_{E E}=\frac{\pi c v_{c}}{3} T^{3}
$$

and can be expressed in terms of the effective velocity

$$
v^{\text {eff }}=\sqrt{1-\frac{\pi \sigma c T^{2}}{3}} .
$$

- These results are generalizations of CFT results which can be obtained by $v^{\text {eff }} \rightarrow 1$
- $T \bar{T}$ deformation induces diffusion (energy diffusion is absent because of Lorenz invariance)
(general expression: J. De Nardis, D. Bernard, and B. Doyon Phys. Rev. Lett. 121, 160603)

$$
\mathfrak{L}_{P P}=\frac{\sigma^{2}}{2} v_{c} D_{E E}^{2}=\frac{\sigma^{2}}{2} \frac{D_{P P}^{2}}{v_{c}^{3}}
$$

$T \bar{T}$-deformed CFT and RCA 54

- Euler scale hydrodynamics matches exactly the hydrodynamics of RCA 54 A. Bobenko, M. Bordemann, c. Gunn, and U. Pinkall, cMP 158, 127 (1993).

$$
\partial_{t} \rho_{ \pm}+\partial_{x}\left(v_{ \pm}^{\text {eff }} \rho_{ \pm}\right)=0
$$

A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, Phys. Rev. Lett. 123, 170603 (2019)

Holographic solution

- Bipartition protocol is solved by joining the two solutions at time $t=0$ (done in CFT by M. J. Bhaseen, B. Doyon, A. Lucas, K. Schalm Nature Physics 11, 509-514(2015))

$$
\mathcal{L}(u)=\mathcal{L}_{L} \theta(-u)+\mathcal{L}_{R} \theta(u) \quad \overline{\mathcal{L}}(v)=\overline{\mathcal{L}}_{L} \theta(-v)+\overline{\mathcal{L}}_{R} \theta(v)
$$

This means that NESS comprises two shock waves at $u=0$ and $v=0$. The coordinate transformation can be solved exactly

$$
x=-\frac{1+\mu \overline{\mathcal{L}}_{L}}{1-\mu \overline{\mathcal{L}}_{L}} t \quad x=\frac{1+\mu \mathcal{L}_{R}}{1-\mu \mathcal{L}_{R}} t
$$

- NESS current is

$$
\begin{aligned}
& \left\langle j_{E}\right\rangle_{\mathrm{NESS}}=\frac{1}{8 \pi G \ell} \frac{\mathcal{L}_{L}-\mathcal{L}_{R}}{1-\mu^{2} \mathcal{L}_{L} \mathcal{L}_{R}} \\
& \left\langle j_{P}\right\rangle_{\mathrm{NESS}}=\frac{1}{8 \pi G \ell} \frac{\mathcal{L}_{L}+\mathcal{L}_{R}+2 \mu \mathcal{L}_{L} \mathcal{L}_{R}}{1-\mu^{2} \mathcal{L}_{L} \mathcal{L}_{R}}
\end{aligned}
$$

- We can reproduce the integrability result by identifying

$$
\sqrt{\mathcal{L}}=\frac{\beta\left(\sqrt{\frac{4 \pi^{2} /^{2} \mu}{\beta^{2}}+1}-1\right)}{2 \pi / \mu}=\frac{\pi \ell}{\tilde{\beta}_{ \pm}(\beta, 0)}
$$

Holographic approach

- The results hold at all orders in the deformation parameter
- No diffusion: while Onsager coefficient is finite, the broadening of the fronts is governed by diffusion. In holography diffusion is suppressed since $\mathfrak{D}=\frac{1}{C} \mathfrak{L}$ and $C \propto c$
- Momentum diffusion can be obtained in the leading order σ^{2} also via the conformal perturbation theory, and agrees with the integrability calculation

Overview and Outlook

- Nonperturbative test of the deformed holographic correspondence
- Perfect agreement between holographic and integrable CFTs \rightarrow Universal results
- Generalization to other deformations/GGEs/quantities (entanglement, operator spreading,...)
- Exact relation to cellular automata

[^0]: O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).
 B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).

