$T\bar{T}$ -deformed CFTs out of equilibrium

M. Medenjak, G. Policastro, T. Yoshimura, arXiv:2011.05827, arXiv:2010.15813

Marko Medenjak, École Normale Supérieure December 3, 2020

- Understanding the corrections to the Stephan-Boltzmann law, if $\ensuremath{\mathcal{T}}$ is not traceless
- The effects of CFT breaking: leading order correction if Lorenz invariance is unbroken (no umklapp processes)
- Connecting holography and GHD results

Overview

- Bipartition protocol and transport
- $T\bar{T}$ deformed CFTs
 - Integrability
 - holography
- Integrability/GHD approach
 - GHD overview
 - NESS
 - Energy/momentum Drude weights
 - Diffusion constants
- Holographic approach
 - NESS
 - Drude weights

Bipartition protocol

• Bipartition protocol: two sides prepared in different stationary states

 $\rho(\mathbf{0}) = \rho_L \otimes \rho_R$

• Nonequilibrium steady state (NESS) forms along the light rays $\xi = \frac{x}{t}$ for large times $t \to \infty$:

 $\lim_{t\to\infty} \langle o(\xi t, t) \rangle = \langle o(\xi) \rangle_{NESS}$

• What is NESS for $T\bar{T}$ deformed CFTs if two boosted thermal states $\rho_{L/R} \propto \exp(-\beta_{L/R}H + \nu_{L/R}P)$ are joined?

Transport coefficients

- Drude weight D_{ij}, the Onsager coefficient L^(reg)_{ij}, and diffusion constant D_{ij} (response of the current j_i to the charge q_j)
 σ_{ij}(ω) = D_{ij}δ(ω) + σ^(reg)_{ij}(ω), L_{ij} = σ^(reg)_{ij}(0), L_{ij} = D_{ik}C^k_j
- Linear response expressions

$$D_{ij} = \lim_{t \to \infty} \int_{-t}^{t} \frac{\mathrm{d}s}{2t} \int_{\mathbb{R}} \mathrm{d}x \langle j_i(x,s) j_j(0,0) \rangle^c$$
$$\mathfrak{L}_{ij} = \int_{\mathbb{R}} \mathrm{d}t \left(\int_{\mathbb{R}} \mathrm{d}x \langle j_i(x,t) j_j(0,0) \rangle^c - D_{ij} \right)$$

 From the bipartition protocol we can extract transport coefficients by considering infinitesimal difference of chemical potentials

$$egin{aligned} D_{ij} &= \lim_{t o \infty} rac{1}{2t} rac{\int_{\mathbb{R}} \mathrm{d}x \left\langle j_i(x,t)
ight
angle_{\delta \mu_j}}{\delta \mu_j} \ \mathfrak{L}_{ij} &= rac{\int_{\mathbb{R}} \mathrm{d}t (\int_{\mathbb{R}} \mathrm{d}x \left\langle j_i(x,t)
ight
angle_{\delta \mu_j} - D_{ij})}{\delta \mu_j} \end{aligned}$$

Transport coefficients

$T\bar{T}$ deformation

• $T\bar{T}$ deformation of the theory is obtained via the set of infinitesimal changes

$$\mathcal{L}^{(\sigma+\delta\sigma)}=\mathcal{L}^{(\sigma)}+rac{\delta\sigma}{2}\,{
m det}\,T_{\mu
u}$$

• The theory preserves Lorenz invariance. If we know the spectrum of the undeformed theory, we can solve the deformed theory

F.A. Smirnov and A.B. Zamolodchikov, Nucl. Phys. B 915 (2017) 363

$$\partial_{\sigma}E_n(R,\sigma) = E_n(R,\sigma)\partial_RE_n(R,\sigma) + \frac{1}{R}P_n^2(R)$$

• On the level of the *S* matrix the deformation is induced by the multiplication by a phase factor

$$S^{(\sigma)}(heta)=e^{\mathrm{i}\Sigma(heta)}S^{(0)}(heta),\quad \Sigma(heta)=-\sigma p_+(heta_1)p_-(heta_2)$$

$$p_{\pm}(heta) = \pm rac{M}{2} e^{\pm heta}$$

Deformed correspondence

Gravity in 3d in radial coordinates (ρ-radius)

$$ds^{2} = \ell^{2} \frac{\mathrm{d}\rho}{4\rho} + \left(\frac{g_{\alpha\beta}^{(0)}(x^{\alpha})}{\rho} + g_{\alpha\beta}^{(2)}(x^{\alpha}) + \rho g_{\alpha\beta}^{(4)}(x^{\alpha})\right) dx^{\alpha} dx^{\beta}$$

 $(g^{(4)} \text{ is related to } g^{(2)})$

- Undeformed case asympthotically ($\rho \to 0$): $g^{(2)} = 8\pi G \ell \, \hat{T}$ and $g^{(0)} = \gamma_0$
- There is a nonlinear connection between the deformed and undeformed stress energy tensor and metric which gives us

$$\begin{split} \gamma_{\mu} &= g^{(0)} + \mu g^{(2)} + \mu^2 g^{(4)} \\ \hat{T}_{\mu} &= \frac{1}{8\pi G \ell} (g^{(2)} + 2\mu g^{(4)}) \\ \text{with } \mu &= -\frac{c\sigma}{12\pi\ell^2} \text{ and } \hat{T}_{\alpha\beta} = T_{\alpha\beta} - \gamma_{\alpha\beta} T_{\gamma}^{\gamma}. \ \gamma_{\mu} \text{ is exactly the induced metric at } \rho &= \mu. \end{split}$$

M Guica, R Monten - arXiv preprint arXiv:1906.11251

L. McGough, M. Mezei and H. Verlinde, JHEP 04 (2018) 010

Deformed correspondence

CFT in flat metric

$$ds^{2} = \ell^{2} \frac{d\rho^{2}}{4\rho^{2}} + \frac{dudv}{\rho} + \mathcal{L}(u) du^{2} + \bar{\mathcal{L}}(v) dv^{2} + \rho \mathcal{L}(u) \bar{\mathcal{L}}(v) dudv.$$

Deformed metric at the boundary $\gamma_{\mu} = dUdV$ is flat in new coordinates

$$U = u + \mu \int^{v} \overline{\mathcal{L}}(v') dv', \quad V = v + \mu \int^{u} \mathcal{L}(u') du'$$

where \mathcal{L} and $\overline{\mathcal{L}}$ are constant for a BTZ black hole and correspond to the finite temperature and momentum in the deformed CFT:

$$\beta = \frac{\pi \ell}{2} \left(\frac{1}{\sqrt{\mathcal{L}}} + \frac{1}{\sqrt{\mathcal{L}}} \right) (1 - \mu \sqrt{\mathcal{L} \overline{\mathcal{L}}}), \quad \nu = \frac{\mathcal{L} - \overline{\mathcal{L}}}{\mathcal{L} + \overline{\mathcal{L}}}$$

Inverting the coordinate transformation and using the connection:

$$T_{tt} = \frac{1}{8\pi G\ell} \frac{\mathcal{L} + \bar{\mathcal{L}} - 2\mu \mathcal{L}\bar{\mathcal{L}}}{1 - \mu^2 \mathcal{L}\bar{\mathcal{L}}} T_{xt} = \frac{1}{8\pi G\ell} \frac{\mathcal{L} - \bar{\mathcal{L}}}{1 - \mu^2 \mathcal{L}\bar{\mathcal{L}}}$$
$$T_{xx} = \frac{1}{8\pi G\ell} \frac{\mathcal{L} + \bar{\mathcal{L}} + 2\mu \mathcal{L}\bar{\mathcal{L}}}{1 - \mu^2 \mathcal{L}\bar{\mathcal{L}}}$$

Euler scale hydrodynamics

• We assume a separation of time scales (systems equilibrate locally). If we consider Euler (ballistic) scales $\xi = \frac{x}{t}$, $\lim_{t\to\infty}$, then the expectation values of local observables depend only on modulation of chemical potentials

$$ar{o}_i(x,t) = \lim_{\ell o \infty} \langle o(\ell x, \ell t)
angle = \langle o
angle_{\{eta_i(x,t)\}}$$

• This implies that the dynamics of charges is governed purely by the set of continuity equation

$$\partial_t \bar{q}_i(x,t) + \partial_x \bar{j}_i(x,t) = 0$$

since $\bar{o}_i(x, t)$ depend only on the set of $\{\beta_i(x, t)\}$, or equivalently $\bar{q}_i(x, t)$. Generalized hydrodynamics \rightarrow a prescription how to obtain averages of currents.

Thermodynamics of integrable systems

• In order to obtain $\overline{j}_i(x, t)$ we need to discern the expectation values of currents and charges in ρ .

Thermodynamics of integrable systems

- In order to obtain $\overline{j}_i(x, t)$ we need to discern the expectation values of currents and charges in ρ .
- Integrable systems have a stable quasi-particle structure. Upon scattering the set of momenta is preserved, and particles undergo phase shifts. Thermodynamics is governed by pseudoenergy ε(θ) (θ is a rapidity variable)

$$\varepsilon(\theta) = w(\theta) + \int \mathrm{d} \theta' T(\theta, \theta') L(\varepsilon(\theta'))$$

 $w(\theta) = \sum \beta^i h_i(\theta)$ -source term ($\rho \sim exp(\sum \beta^i Q_i)$), $T(\theta, \theta')$ -two body phase shift, $h_i(\theta)$ the amount of charge q_i carried by the quasiparticle θ , $L(\varepsilon)$ -free energy function (fermions: $L = -\log(1 + \exp(-\varepsilon))$)

Thermodynamics of integrable systems

- In order to obtain *j_i(x, t)* we need to discern the expectation values of currents and charges in *ρ*.
- Integrable systems have a stable quasi-particle structure. Upon scattering the set of momenta is preserved, and particles undergo phase shifts. Thermodynamics is governed by pseudoenergy ε(θ) (θ is a rapidity variable)

$$\varepsilon(\theta) = w(\theta) + \int \mathrm{d} \theta' T(\theta, \theta') L(\varepsilon(\theta'))$$

 $w(\theta) = \sum \beta^i h_i(\theta)$ -source term $(\rho \sim exp(\sum \beta^i Q_i))$, $T(\theta, \theta')$ -two body phase shift, $h_i(\theta)$ the amount of charge q_i carried by the quasiparticle θ , $L(\varepsilon)$ -free energy function (fermions: $L = -\log(1 + \exp(-\varepsilon)))$

• Free energy f and occupation function n(p)

$$f = -\int \frac{\mathrm{d}\theta}{2\pi} p'(\theta) L(\varepsilon) \qquad n(p) = \frac{\mathrm{d}L(\epsilon)}{\mathrm{d}\varepsilon}$$

GHD: Currents and charges

 Expectation value of conserved charge *q*_i can of-course be obtained by taking the derivative of f wrt β_i

$$\overline{q}_{i} = \int \frac{\mathrm{d}p}{2\pi} n(p) h_{i}^{dr}(p) = \int \frac{\mathrm{d}p}{2\pi} \rho_{p}(p) h_{i}(p); \qquad h_{i}^{dr}(p) = \frac{\partial \epsilon(p)}{\partial \beta_{i}}$$

O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).

B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).

GHD: Currents and charges

 Expectation value of conserved charge *q*_i can of-course be obtained by taking the derivative of f wrt β_i

$$\overline{q}_i = \int \frac{\mathrm{d}p}{2\pi} n(p) h_i^{dr}(p) = \int \frac{\mathrm{d}p}{2\pi} \rho_p(p) h_i(p); \qquad h_i^{dr}(p) = \frac{\partial \epsilon(p)}{\partial \beta_i}$$

• Intuition: relativistic QFT's crossing symmetry \rightarrow currents \leftrightarrow charges, exchange of energy and momentum

$$\bar{j}_i = \int \frac{\mathrm{d}p}{2\pi} E'(p) n(p) h_i^{dr}(p) = \int \mathrm{d}p v^{eff}(p) \rho_p(p) h_i(p)$$

O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).

B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).

GHD: Currents and charges

 Expectation value of conserved charge *q
_i* can of-course be obtained by taking the derivative of *f* wrt β_i

$$\overline{q}_i = \int \frac{\mathrm{d}p}{2\pi} n(p) h_i^{dr}(p) = \int \frac{\mathrm{d}p}{2\pi} \rho_p(p) h_i(p); \qquad h_i^{dr}(p) = \frac{\partial \epsilon(p)}{\partial \beta_i}$$

• Intuition: relativistic QFT's crossing symmetry \rightarrow currents \leftrightarrow charges, exchange of energy and momentum

$$\bar{j}_i = \int \frac{\mathrm{d}p}{2\pi} E'(p) n(p) h_i^{dr}(p) = \int \mathrm{d}p v^{eff}(p) \rho_p(p) h_i(p)$$

• GHD equation

$$\partial_t \rho_p(p,x,t) + \partial_x(v^{eff}(p,x,t)\rho_p(p,x,t)) = 0$$

O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura Phys. Rev. X 6, 041065 (2016).

B. Bertini, M. Collura, J. De Nardis, and M. Fagotti Phys. Rev. Lett. 117, 207201 (2016).

• We consider $\rho \sim \exp(-\beta H + \nu P)$. $T\bar{T}$ deformation induces the L-R scattering $\tilde{T}_{\pm\mp}(\theta, \theta') = -\sigma p_{+}(\theta)p_{-}(\theta')/(2\pi) =$ two body phase shift

$$\varepsilon_{\pm}(\theta) = \beta_{\pm} E_{\pm}(\theta) - T \star L_{\pm}(\theta) - \tilde{T}_{\pm\mp} \star L_{\mp}(\theta),$$

• We consider $\rho \sim \exp(-\beta H + \nu P)$. $T\bar{T}$ deformation induces the L-R scattering $\tilde{T}_{\pm\mp}(\theta, \theta') = -\sigma p_{+}(\theta)p_{-}(\theta')/(2\pi) =$ two body phase shift

$$\varepsilon_{\pm}(\theta) = \beta_{\pm} E_{\pm}(\theta) - T \star L_{\pm}(\theta) - \tilde{T}_{\pm\mp} \star L_{\mp}(\theta),$$

• Surprisingly $v_{\pm}^{\rm eff}$ does not depend on θ and simply reads

$$v_{\pm}^{eff} = rac{\pm 1 + \sigma(
ho_{+} -
ho_{-})}{1 + \sigma(
ho_{+} +
ho_{-})},$$

where ρ_{\pm} energy densities associated with the L/R movers.

• We consider $\rho \sim \exp(-\beta H + \nu P)$. $T\bar{T}$ deformation induces the L-R scattering $\tilde{T}_{\pm\mp}(\theta, \theta') = -\sigma p_{+}(\theta)p_{-}(\theta')/(2\pi) =$ two body phase shift

$$\varepsilon_{\pm}(\theta) = \beta_{\pm} E_{\pm}(\theta) - T \star L_{\pm}(\theta) - \tilde{T}_{\pm\mp} \star L_{\mp}(\theta),$$

- Surprisingly $\textit{v}^{\textit{eff}}_{\pm}$ does not depend on θ and simply reads

$$v_{\pm}^{eff} = rac{\pm 1 + \sigma(
ho_{+} -
ho_{-})}{1 + \sigma(
ho_{+} +
ho_{-})},$$

where ρ_{\pm} energy densities associated with the L/R movers.

• Hydrodynamics is governed simply by two coupled equations

$$\partial_t \rho_{\pm} + \partial_x (v_{\pm}^{eff} \rho_{\pm}) = 0.$$

• We consider $\rho \sim \exp(-\beta H + \nu P)$. $T\bar{T}$ deformation induces the L-R scattering $\tilde{T}_{\pm\mp}(\theta, \theta') = -\sigma p_{+}(\theta)p_{-}(\theta')/(2\pi) =$ two body phase shift

$$\varepsilon_{\pm}(\theta) = \beta_{\pm} E_{\pm}(\theta) - T \star L_{\pm}(\theta) - \tilde{T}_{\pm\mp} \star L_{\mp}(\theta),$$

- Surprisingly $\textit{v}^{\textit{eff}}_{\pm}$ does not depend on θ and simply reads

$$v_{\pm}^{eff} = rac{\pm 1 + \sigma(
ho_{+} -
ho_{-})}{1 + \sigma(
ho_{+} +
ho_{-})},$$

where ρ_{\pm} energy densities associated with the L/R movers.

• Hydrodynamics is governed simply by two coupled equations

$$\partial_t \rho_{\pm} + \partial_x (v_{\pm}^{\text{eff}} \rho_{\pm}) = 0.$$

• Solution $(e_{RL} = 1/(1 - (\frac{\pi\sigma c}{12})^2 \tilde{T}_L^2 \tilde{T}_R^2))$ $\langle j_E \rangle_{\text{NESS}} = \frac{\pi c}{12} e_{RL} (\tilde{T}_L^2 - \tilde{T}_R^2),$ $\langle j_P \rangle_{\text{NESS}} = \frac{\pi c}{12} e_{RL} (\tilde{T}_L^2 + \tilde{T}_R^2 - \frac{\pi c\sigma}{6} \tilde{T}_L^2 \tilde{T}_R^2)$

Similar to CFTs, but no chiral separation $\langle j \rangle_{\rm NESS} \neq f(\beta_L) - f(\beta_R)$ ¹²

NESS corresponds to the thermal state with effective temperature $T = \sqrt{T_L T_R}$ with the boost tanh $\nu = \frac{(\beta_L - \beta_R)}{(\beta_L + \beta_R)}$

NESS has the same form as in the CFT case (velocity in CFT is ± 1)

Transport coefficients

 Momentum and energy Drude weights are simple functions of energy density and pressure

(general expression: E. Ilievski and J. De Nardis Phys. Rev. Lett. 119, 020602)

$$D_{EE} = \frac{\mathbf{e} + \mathbf{p}}{\beta} = \frac{\pi c}{3v_c} T^3, \ D_{PP} = \left(\frac{\mathbf{p}}{\mathbf{e}}\right)^2 D_{EE} = \frac{\pi c v_c}{3} T^3$$

and can be expressed in terms of the effective velocity

$$v^{\text{eff}} = \sqrt{1 - \frac{\pi \sigma c T^2}{3}}$$

- These results are generalizations of CFT results which can be obtained by $\nu^{\rm eff} \to 1$
- $T\bar{T}$ deformation **induces diffusion** (energy diffusion is absent because of Lorenz invariance)

(general expression: J. De Nardis, D. Bernard, and B. Doyon Phys. Rev. Lett. 121, 160603)

$$\mathfrak{L}_{PP} = \frac{\sigma^2}{2} v_c D_{EE}^2 = \frac{\sigma^2}{2} \frac{D_{PP}^2}{v_c^3}$$

$T\overline{T}$ -deformed CFT and RCA 54

• Euler scale hydrodynamics matches exactly the hydrodynamics of RCA 54 A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall, CMP 158, 127 (1993).

$$\partial_t \rho_{\pm} + \partial_x (v_{\pm}^{eff} \rho_{\pm}) = 0.$$

A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, Phys. Rev. Lett. 123, 170603 (2019)

K. Klobas, M. Medenjak, T. Prosen, M. Vanicat CMP 371, 651-688 (2019)

Holographic solution

• Bipartition protocol is solved by joining the two solutions at time t = 0 (done in CFT by M. J. Bhaseen, B. Doyon, A. Lucas, K. Schalm Nature Physics 11, 509–514(2015))

$$\mathcal{L}(u) = \mathcal{L}_L \theta(-u) + \mathcal{L}_R \theta(u) \quad \overline{\mathcal{L}}(v) = \overline{\mathcal{L}}_L \theta(-v) + \overline{\mathcal{L}}_R \theta(v)$$

This means that NESS comprises two shock waves at u = 0 and v = 0. The coordinate transformation can be solved exactly

$$x = -\frac{1+\mu\bar{\mathcal{L}}_L}{1-\mu\bar{\mathcal{L}}_L}t \quad x = \frac{1+\mu\mathcal{L}_R}{1-\mu\mathcal{L}_R}t$$

NESS current is

$$\langle j_E \rangle_{\rm NESS} = \frac{1}{8\pi G\ell} \frac{\mathcal{L}_L - \mathcal{L}_R}{1 - \mu^2 \mathcal{L}_L \mathcal{L}_R} \\ \langle j_P \rangle_{\rm NESS} = \frac{1}{8\pi G\ell} \frac{\mathcal{L}_L + \mathcal{L}_R + 2\mu \mathcal{L}_L \mathcal{L}_R}{1 - \mu^2 \mathcal{L}_L \mathcal{L}_R}$$

• We can reproduce the integrability result by identifying

$$\sqrt{\mathcal{L}} = \frac{\beta \left(\sqrt{\frac{4\pi^2 l^2 \mu}{\beta^2} + 1} - 1\right)}{2\pi I \mu} = \frac{\pi \ell}{\tilde{\beta}_{\pm}(\beta, 0)}$$

- The results hold at all orders in the deformation parameter
- No diffusion: while Onsager coefficient is finite, the broadening of the fronts is governed by diffusion. In holography diffusion is suppressed since $\mathfrak{D} = \frac{1}{C}\mathfrak{L}$ and $C \propto c$
- Momentum diffusion can be obtained in the leading order σ^2 also via the conformal perturbation theory, and agrees with the integrability calculation

- Nonperturbative test of the deformed holographic correspondence
- Perfect agreement between holographic and integrable CFTs \rightarrow Universal results
- Generalization to other deformations/GGEs/quantities (entanglement, operator spreading,...)
- Exact relation to cellular automata