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Background and motivations:
thermalization and unitarity



Equilibration

Non-integrable many body systems are universally expected to
approach equilibrium from an out-of-equilibrium initial state.

Consider a quantum many-body system initially in a pure state |ψ0〉.
|ψ(t)〉 = U(t) |ψ0〉

At late times, |ψ(t)〉 should macroscopically resemble some
equilibrium density matrix ρ(eq).

For generic few-body observables O,
〈ψ(t)|O|ψ(t)〉 ≈ Tr[ρ(eq)O]



Constraints from unitarity

Under unitary evolution, pure states evolve to pure states. In
particular, ρ(t) = |ψ(t)〉 〈ψ(t)| cannot become equal to ρ(eq).

Renyi entropies are one set of observables that can distinguish
between pure and mixed states:
(A is any subsystem, and Ā is its complement)

S
(A)
n (t) = − 1

n − 1
logTrρnA(t), ρA(t) = TrĀρ(t), n = 1, 2, ...

In a pure state, for any n, we should have for any subsystem A

S
(A)
n = S

(Ā)
n .

This is not true for a mixed state like ρ(eq).

What form do the Renyi entropies of |ψ(t)〉 take at late times when
the state has macroscopically equilibrated?



Black holes as thermalized pure states

Isolated star in pure state |ψ0〉y
Black holey

Black hole radiates (and often evaporates)

Black holes show macroscopic behaviour resembling thermal states:

They emit thermal radiation at some temperature.

Have an entropy satisfying standard thermodynamic relations.

Correlation functions of few-body observables take thermal values.



Black holes as thermalized pure states

If black holes obey the unitarity of quantum mechanics, then the final
state must be an equilibrated pure state.

In particular, at all times, we should have

S
(B)
n = S

(R)
n ,

where B is the black hole and R is its emitted radiation.

A calculation in semiclassical gravity by Hawking predicted that

S
(R)
n � S

(B)
n at late times. (SR : red; SB : blue)

t

S

How can we obtain a unitary result for the entanglement entropies of
an evaporating black hole?



Typical pure states

Consider some system L = A⊗ Ā. Average S
(A)
n and S

(Ā)
n over all

pure states |ψ〉 ∈ L with the uniform measure. When either
dA � dĀ or dĀ � dA, Lubkin, Lloyd and Pagels, Page

S
(A)
n = S

(Ā)
n = min (log dA, log dĀ), n = 1, 2, · · · .

If dL is large, standard deviation about this average is small.

Consistent with unitarity.

When dA � dĀ, the value of S
(A)
n in typical pure states matches the

value we would expect for a thermal state at infinite temperature,
1/dA.

How should this expression be generalized to finite temperature?

Generalization to infinite-dimensional Hilbert spaces (e.g. QFTs)?

Can we find a systematically improvable approximation for these
quantities?



Plan

Derivation of approximation method for finding entanglement
entropies in equilibrated pure states.

(Applicable for finite temperatures and infinite-dimensional Hilbert
spaces; can in principle be systematically improved.)

Mathematical structure and physical implications.

Applications to the black hole information loss paradox.



Developing the approximation method



Starting point: assume we can identify some equilibrium density
matrix ρ(eq) that |ψ(t)〉 = U |ψ0〉 resembles at late times (t � ts).

ρ(eq) =
1

Z (α)
Iα, Z (α) = Tr Iα

We will assume Z (α)� 1.

Iα is invariant under the time-evolution, UIαU† = Iα.

Examples:

Infinite temperature:
I = 1, Z = d

Microcanonical ensemble:

IE =
∑
En∈I

|n〉 〈n| , Z (E ) = Tr IE = NI , I = (E −∆E ,E + ∆E )

Canonical ensemble:

Iβ = e−βH , Z (β) = Tre−βH



We will now provide two kinds of expressions for the Renyi entropy as
a transition amplitude on a replicated Hilbert space.

Path integral representation:

Z(A)
n = e−(n−1)S

(A)
n = TrAρ

n
A = TrA

(
TrĀUρ0U

†
)n

= (...)
n∏

i=1

∫ ψi ,ψ
′
i

χi ,χ
′
i

Dφi (t)Dφ′i (t) exp

(
i

n∑
i=1

(S [φi ]− S [φ′i ])

)

…

! = 0

!

$! $′! $" $′" $# $′#

&$

Tr% , Tr%

Exponent in path integral vanishes in configurations where Zhou and Nahum

φi = φ′σ(i), σ ∈ Sn.

Naively putting this into the path integral, we get a divergent answer.



Notation:

σ, τ : permutations in Sn.

e = identity permutation, η = (n, n − 1, ..., 1).

For any operator O acting on H, and any permutation σ ∈ Sn, define
state |O, σ〉 ∈ (H⊗H)n : (|i〉 is a basis for H)

〈i1 ī ′1i2 ī ′2 · · · in ī ′n|O, σ〉 = Oi1i ′σ(1)
Oi2i ′σ(2)

· · · Oini ′σ(n)
, Oij = 〈i |O|j〉

Special case of O = 1:

〈i1 ī ′1i2 ī ′2 · · · in ī ′n|σ〉 = δi1i ′σ(1)
δi2i ′σ(2)

· · · δini ′σ(n)
.

〈e|O, e〉 = Tr[O]n, 〈η|O, e〉 = Tr[On]

Similarly, can define |O, σ〉A ∈ (HA ⊗HA)n.

Using this notation, we can rewrite

Z(A)
n = TrA

(
TrĀUρ0U

†
)n

= 〈ηA ⊗ eĀ|(U ⊗ U†)n|ρ0, e〉



Define projector onto states spanned by {|Iα, σ〉}σ∈Sn :

Pα =
1

Zn
2

∑
σ,τ

gστ |Iα, σ〉 〈Iα, τ | .

Decomposing the identity on (H⊗H)n as
1 = Pα + Q, PαQ = QPα = 0, Q2 = Q

we can rewrite

Z(A)
n = 〈ηA ⊗ eĀ|(Pα + Q)(U ⊗ U†)n(Pα + Q)|ρ0, e〉

But from UIαU† = Iα,
(U ⊗ U†)nPα = Pα(U ⊗ U†)n = Pα .

Hence,

Z(A)
n = 〈ηA ⊗ eĀ|Pα|ρ0, e〉+ 〈ηA ⊗ eĀ|Q(U ⊗ U†)nQ|ρ0, e〉

≡ Z(A)
n,P + Z(A)

n,Q .

Note that the first term is time-independent.

Proposal: At late times, and in systems with large Hilbert space

dimension, Z(A)
n,Q can be ignored.



Z(A)
n ≈ Z(A)

n,P =
1

Zn
2

∑
σ,τ

g τσ 〈ηA ⊗ eĀ|Iα, τ〉 〈Iα, σ|ρ0, e〉 , n = 1, 2, 3, · · · .

Using the fact that the effective Hilbert space dimension Z1 is large, we
can simplify to:

Z(A)
n ≈

∑
τ∈Sn
Z(A)
n (τ), Z(A)

n (τ) =
1

Zn
1

〈ηA ⊗ eĀ|Iα, τ〉 .

In particular, note that the dependence on ρ0 drops out, and the final
expression is written only in terms of Iα.



Justification in infinite temperature case

Exact expression:

Z(A)
n = TrA

(
TrĀUρ0U

†
)n

= 〈ηA ⊗ eĀ|(U ⊗ U†)n|ρ0, e〉
Averaging over all unitary time-evolution operators U with the Haar
measure, we get the equilibrium approximation for infinite
temperature Zhou and Nahum

(U ⊗ U†)n = PI=1 =
1

dn

∑
σ,τ

gστ |σ〉 〈τ |

Consider the variance under the Haar average:(
Z(A)
n,Q

)2
= (Z(A)

n )2 − (Z(A)
n,P )2.

In the large d limit, (
Z(A)
n,Q

)2
� (Z(A)

n,P )2.

For other choices of ρ(eq), we do not have a similar average over
relevant time-evolution operators.



Self-consistency criterion

For any time-evolved quantity that can be written in the form

F (t) = 〈A| (U ⊗ U†)q |ρ0, e〉
we can define the equilibrium approximation

[F ]eq app = 〈A| Pα |ρ0, e〉

To see if the approximation is valid for a quantity F , we use the
self-consistency criterion

[F 2]eq app − ([F ]eq app)2 � ([F ]eq app)2.

For the Renyi entropies, we can show

∆ ≡
[(
Z(A)
n

)2
]

eq app

−
(
Z(A)
n,P

)2
�
(
Z(A)
n,P

)2

when the effective Hilbert space dimension is large.



Equilibrium approximation for other observables

Various other quantities can be expressed as transition amplitudes on
replicated Hilbert spaces:
n-point functions of observables, spectral form factors, Renyi
negativities, and Renyi relative entropies.

To see whether the equilibrium approximation is valid, need to check
self-consistency criterion.

Expectation values of observables:
〈O(t)〉eq app = Tr[ρeqO]

If O has support only on subsystem A, then the self-consistency
criterion is met if dA � dĀ, otherwise not valid.

n−th power of spectral form factor:
Sn ≡ (TrUTrU†)n = T̂r[(U ⊗ U†)n]

For any choice of Iα, we get
[Sn]eq app = n!

So the self-consistency criterion is not met for any n. (Also, does not
capture expected late-time features of ramp, plateau.)



Mathematical structure and physical consequences



Diagrammatic interpretation

Z(A)
n ≈

∑
τ∈Sn
Z(A)
n (τ), Z(A)

n (τ) =
1

Zn
1

〈ηA ⊗ eĀ|Iα, τ〉 .
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FIG. 2. “Boundary conditions” for each of the Z(A)
n (⌧), coming from the factor in parentheses in

(2.38). Explain how to contract with |I↵, ⌧i. fig:ind_circ
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(a) (b)! = # ! = $ (c) ! = (12)(643)(5)

FIG. 3. Examples of planar diagrams corresponding to di↵erent choices of planar permutations ⌧

that saturate (2.39). fig:eq

precise versions of the above heuristic equation can be seen in a number of examples we

consider below [check that this is adequately explained below]. Note that

k(⌘�1⌧) + k(⌧)  n + 1 . (2.40) yeg

Permutations ⌧ which saturate (2.40) have the largest possible total number of A loops
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(a) ! = (14)(26)(3)(5) (b) ! = (15234)(6)

FIG. 4. Examples of non-planar diagrams corresponding to two choices of ⌧ that do not saturate

(2.39). fig:rev

and Ā loops, and correspond to the planar diagrams of Fig. 3. Immediate examples

of such planar permutations are ⌧ = e and ⌧ = ⌘. More generally, there is a one-to-

one correspondence between such planar permutations and “non-crossing partitions” of

n elements.7 [given a non-crossing partition, ordering the elements in each group in de-

scending order leads to the cycle representation of a planar permutation ⌧ .] Given a

non-crossing partition {{a1
1, a

1
2, ..., a

1
n1

}, {a2
1, a

2
2, ..., a

2
n2

}, ... , {ak
1, a

k
2, ..., a

k
nk

}}, where the el-

ements of each subset in the partition are arranged in descending order (e.g. a1
1 > a1

2 >

... > a1
n1

), the cycle representation of the corresponding planar permutation is given by

(a1
1, a

1
2, ..., a

1
n1

) (a2
1, a

2
2, ..., a

2
n2

) ... (ak
1, a

k
2, ..., a

k
nk

). Fig. 4 contains some examples of non-

planar diagrams, corresponding to ⌧ that do not saturate (2.40).

Let us make some further observations on the structure of Z(A)
n (⌧) which will be useful

in the later discussion. (2.38) can be further simplified as

h⌘A ⌦ eĀ|I↵, ⌧i = hi⌘(1)ai1b
|I↵|i⌧(1)ai⌧(1)b

i · · · hi⌘(n)ainb
|I↵|i⌧(n)ai⌧(n)b

i (2.41) one

Since ika , ikb
are dummy indices, relabelling ikb

! i⌫(k)b
, ika ! iµ(k)a for any µ, ⌫ 2 Sn

7 Consider a partition of {1, 2, · · · n} and any four elements a < b < c < d. The partition is non-crossing if

whenever a, c are in the same group and b, d are in the same group, the two groups coincide.
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k(τ) : number of cycles in τ , number of solid loops in diagram.
k(ητ−1) : number of dashed loops.

Z(A)
n (τ) ∼ 1

Zn
1

d
k(η−1τ)
A d

k(τ)

Ā

For any τ ,
k(η−1τ) + k(τ) ≤ n + 1 .

Saturated for non-crossing permutations/ planar diagrams.



Path integral representation

Z(A)
n ≈ 1

Z n
1

∑
τ∈Sn

〈iη(1)a i1b
|Iα|iτ(1)a iτ(1)b〉 · · · 〈iη(n)a inb |Iα|iτ(n)a iτ(n)b〉

=
1

Z n
1

∑
τ∈Sn

∫ n∏
i=1

DψiDψ
′
i δ(ψiA − ψ′τ−1η(i)A)δ(ψi Ā − ψ′τ−1(i)Ā)

n∏
i=1

∫ ψi

ψ′i

Dφi e
−SE [φi ]

! !

! !

! !

1

2

3

! !

! !

! !

1

2

3

1′

2′2′

3′

1′

3′

!′ = 0

!′ = %

!′ = 0

!′ = %

!′ = 0

!′ = %

&

! = # ! = $(b)(a)

! !

! !

! !

1

2

3

! !

! !

! !

1

2

3

1′

2′2′

3′

1′

3′

!′ = 0

!′ = %

!′ = 0

!′ = %

!′ = 0

!′ = %

&

! = # ! = $(b)(a)

! !

! !

! !

1

2

3

! !

! !

! !

1

2

3

! !

! !

! !

1

2

3

1′

2′ 2′2′

3′

1′

3′

1′

3′

! = 0

! = $

! = 0

! = $

! = 0

! = $

%

! = (12)(3)(c)

A sum of |Sn| Euclidean path path integrals on n copies of the system emerges as
an approximation to the original Lorentzian path integral on 2n copies.



Universal implications

Unitarity constraint is satisfied:

Z(A)
n =

∑
τ

Z(A)
n (τ) =

1

2

∑
τ

(
Z(A)
n (τ) + Z(Ā)

n (τ)
)

so that Z(A)
n = Z(Ā)

n .

Dominant contributions in various regimes:

Z(A)
n (τ) ∼ 1

Zn
1

d
k(η−1τ)
A d

k(τ)

Ā

(i) When dA � dĀ, the τ = e term dominates,

Z(A)
n ≈ TrA

[(
TrĀρeq

)n]
(ii) When dĀ � dA, the τ = η term dominates,

Z(A)
n ≈ TrĀ

[(
TrAρeq

)n]
Expected generalization of Page’s result:

S (A)
n = min

(
S (A,eq)
n ,S (Ā,eq)

n

)
, n ≥ 2 ⇒ S

(A)
1 = min

(
S

(A,eq)
1 ,S

(Ā,eq)
1

)
When dĀ and dA are both large and comparable, the non-crossing
permutations/planar diagrams dominate.



Application to the black hole information loss paradox



The black hole information problem

Key to showing that black holes do not destroy information despite

looking thermal: show that S
(B)
n = S

(R)
n at all times.

A calculation in semiclassical gravity by Hawking predicted that

S
(R)
n � S

(B)
n at late times. (SR : red; SB : blue)

t

S

Previously, it was expected that Hawking’s information loss paradox
could only be resolved using non-perturbative quantum gravity.

Recent works Penington; Almheiri, Engelhardt, Marolf, Maxfield; Almheiri, Mahajan, Maldacena, Zhao

showed that a semiclassical prescription with some new ingredients is
sufficient to get a unitary result.



A simple model for black hole evaporation

Penington, Shenker, Stanford, Yang

After the evaporation process, we have a state |Ψ〉 ∈ B ⊗ R.
B = black hole, R = radiation.

Black hole lives in a (1+1)-D spacetime with JT gravity, with
end-of-the-world (EOW) branes behind the horizon.

(a) (b)

R has N orthonormal states |i〉.
Evaluate (ρR)ij = TrB(|Ψ〉 〈Ψ|)ij using a Euclidean gravitational path
integral:

Boundary condition is a segment of length β.
! "(a)

(b) (c)

! " (b)

(a)

i and j give b.c. for the state on the EOW brane.
This boundary condition is “filled in” with a bulk geometry. (Joining
dotted lines gives δij .)

! "(a)

(b) (c)

! " (b)

(a)



A simple model for black hole evaporation

Penington, Shenker, Stanford, Yang

Now to evaluate, for instance, Z(R)
3 = Tr[ρ3

R ] = (ρR)ij(ρR)jk(ρR)ki

! "(a)

(b) (c)

! " (b)

(a)

Geometries like (c), where the Euclidean path integral connects
different replicas, are important for ensuring SB = SR . “Replica
wormholes.”

Why should the entanglement entropies of the state formed from the
black hole collapse and evaporation be evaluated in this way?

How do such Euclidean path integrals emerge from the Lorentzian
dynamics?

Why does including such geometries ensure unitarity?



Equilibrium approximation for the evaporation model

Initial pure state |Ψ0〉.
Final state |Ψ〉 = U(t) |Ψ0〉 macroscopically resembles ρ(eq) with

Iα = 1R ⊗ I(B)
β , I(B)

β = e−βHB

(Radiation has no energy constraint, dimension N; black hole
associated with temperature β.)

Applying the equilibrium approximation, we get

Z(R)
n ≈ 1(

NZ
(B)
1

)n ∑
τ

Nk(τη−1)Z
(B)
n1 · · ·Z

(B)
nk(τ)

where k(τ): number of cycles in τ ;
n1, ..., nk(τ): lengths of cycles of τ , and

Z
(B)
m = Tr[e−mβHB ] = eS0zm(β)

Z
(B)
n for each n corresponds to a boundary Euclidean path integral on

n copies. Using holography, equal to a bulk path integral.

eS0 and N both large → non-crossing permutations dominate.



To match the EOW brane model, Iα = 1R ⊗ f (HB)I(B)
β .

Then the bulk and boundary path integrals for calculating Z
(B)
m

!′ = 0

!′ = %
%

(a) (b)

One-to-one correspondence between contributions from non-crossing
permutations τ in

Z(R)
n ≈ 1(

NZ
(B)
1

)n ∑
τ

Nk(τη−1)Z
(B)
n1 · · ·Z

(B)
nk(τ)

and planar diagrams contributing in the same limit according to the
prescription of Penington, Shenker, Stanford, Yang :

! "(a) ! " (b)

! = # ! = $ ! = (12)(3)



General conclusions

The equilibrium approximation provides a derivation for the replica

wormhole prescription for calculating Z(R)
n .

Unconventional geometries for Z(R)
n come from τ 6= e terms in the

Euclidean path integral expression for the equilibrium approximation.

Unitary result on very general grounds from our earlier argument.

Can be applied to other black hole models, including:

Eternal black hole coupled to an infinite bath. Almheiri, Hartman, Maldacena,

Shaghoulian, Tajdini

Eternal black holeBath Bath
(b)

!

! = 0

$(&)

Non-evaporating black holes, such as big black holes in AdS.

Precise prescriptions for when and how replica wormholes should be
included.



Non-factorization of matrix elements

Penington, Shenker, Stanford, Yang noted that including replica wormholes leads to
results that suggest that (|(ρR)ij |2) does not factorize.

We find the same issue using the equilibrium approximation:
Approximation for matrix elements:

(ρR)ij = (ρPR)ij + ∆Q
ij , (ρR)ij ≈ (ρPR)ij =

1

N
δij

Approximation to the second Renyi entropy:

Z(R)
2 =

∑
ij

|(ρR)ij |2 ≈
1

N
+

1

eS0
× O(1)

So the two expressions are incompatible when N � eS0 .

Using the self-consistency condition for (ρR)ij , we can estimate

|∆Q
ij |eq app ∼

1

N
e−S0/2

Individual off-diagonal matrix elements, coming from fluctuations
around the equilibrium value of (ρR)ij , are suppressed.

They make a significant contribution to Z(R)
2 due to their large number.



Semiclassical gravity and averaging

It has been suggested that the lack of factorization implies that
semiclassical gravity computes an average over theories,

|ρij |2 6= (ρij) (ρij)∗

The equilibrium approximation gives an explanation based on
fluctuations around equilibrium. Valid for a theory with a single fixed
Hamiltonian, no need for average over theories.

Our derivation of the replica wormholes consisted of two steps:
(1) Approximating Lorentzian expressions with a sum of Euclidean
path integrals.
(2) Using semiclassical gravity to compute the Euclidean path
integrals.
The problem with factorization arose at the first step.

So in principle, the issue can be resolved within semiclassical gravity,
by doing a Lorentzian calculation.



Comparison to wormholes in spectral form factors

In Saad, Shenker, Stanford, trumpet contributions were found for the spectral
form factor Tr[e iHt ]Tr[e−iHt ] in Euclidean JT gravity,

which lead to the non-factorization of this quantity into the product
of Tr[e iHt ] and Tr[e iHt ] computed by the same method.

As discussed earlier, this quantity is beyond the scope of the
equilibrium approximation.

Note that here the Lorentzian path integral on 2 copies of the system
is being evaluated with the help of a Euclidean path integral on 2
copies: this does not have the same structure as the equilibrium
approximation.

The “wormholes” appearing in these two scenarios are thus physically
distinct.



Thermalization from an operator evolution perspective



Operator growth in chaotic systems

Consider an operator which initially has support in a small subsystem
of a chaotic system.

The support of this operator increases with time (leads to decay of
OTOCs). Susskind, Shenker, Roberts, Stanford
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Void formation Liu and SV, 1912.08918

Within the growing support of the operator, it has some probability of
being equal to the identity in any given region.

!

"

"#(%)

At any time t, with respect to any region A, write O(t) as

O(t) = O1(t) +O2(t), O1(t) = ÕĀ ⊗ 1A, TrA[O2(t)] = 0

We refer to the presence of O1(t) in O(t) as void formation from O
in A.



Should expect this probability to be small at late times in chaotic systems,
since the support of operators tends to grow.

However, we find that in any many-body system, void formation processes
have important consequences:

Ensuring unitarity of entanglement growth.

Generation of multipartite entanglement between disjoint regions.

Explaining differences in entanglement growth between integrable and
chaotic systems.



Equilibration and the random void distribution

Write the initial density matrix as

ρ = |ψ〉 〈ψ| =
1

d
1 + ρ̂, Tr[ρ̂] = 0

If we assumed that the probability of void formation of ρ̂ in Ā is
negligible at t � ts , then we would find

S
(A)
n = log dA, S

(A)
n 6= S

(Ā)
n

Recall that from the equilibrium approximation at infinite
temperature, if dA � dĀ or dĀ � dA

S
(A)
n = S

(Ā)
n = min(log dA, log dĀ)

Thus, to include the contributions from τ 6= e that lead to a unitary
result, from an operator growth perspective we need to take void
formation processes into account.



Random void distribution

In particular, if ρ̂1(t) is the part of ρ̂(t) with a void in Ā, to get

S
(A)
n = S

(Ā)
n = min(log dA, log dĀ)

we need

P
(Ā)
ρ̂,n ≡

Tr[(ρ̂1(t))n]

Tr[ρ̂n]
=

1

d
2(n−1)

Ā

, Ā� A, n ≥ 2

From a calculation in chaotic local random unitary circuits, we find

that P
(Ā)
O,n takes this form for any traceless operator O.

Thermalization to infinite temperature in unitary systems can be seen
as a consequence of this general property of operator growth, which
we call the “random void distribution.”



Further directions

Applying the method to other kinds of observables, such as Renyi
negativity and Renyi relative entropy. work in progress with J. Kudler-Flam and H. Liu

Helps understand effects of finite temperature on transfer of
information from the black hole to the radiation, and correlations
within the radiation.

Systematically understanding corrections to the approximation from
the ZQ term, and the time-scale for approaching equilibrium. work in

progress with Z.D. Shi and H. Liu

Can equilibration of pure states can be related to a universal property
of operator growth in the finite temperature case?



Thank you!



Example: Infinite temperature

Taking Iα = 1, and considering the limit where dA and dĀ are large
and comparable,

Z(A)
n =

1

dn

n∑
k=1

N(n, k)dn+1−k
A dk

Ā

=
1

dn−1
Ā

+
1

2

n(n − 1)

dAd
n−2
Ā

+ · · ·+ 1

2

n(n − 1)

dn−2
A dĀ

+
1

dn−1
A

N(n, k): number of non-crossing partitions of n objects with k
blocks/ Narayana numbers.

By analytic continuation, we can recover Page’s result

S
(A)
1 =

{
log dA − 1

2
dA
dĀ

dA < dĀ

log dĀ − 1
2
dĀ
dA

dĀ < dA
.

From equilibrium approximation: we can in principle systematically
improve this result by including contributions from ZQ .



Canonical and microcanonical ensemble

Taking Iα = IE , Iβ, we get universal results for pure states that
equilibrate to these ensembles, applicable to any quantum many-body
system.

These results agree with averages over “ergodic bipartition” states Lu

and Grover and “canonical thermal pure states” Nakagawa, Watanabe, Sugiura, Fujita.

Unlike Page’s calculation, these averages cannot be seen as averages
over time-evolution operators.

We find the same results as approximations to the time-evolved
expressions, and also see how they come from a common structure.

So far, we have assumed there is some time-scale ts after which the
full system thermalizes. Not true for uncompact systems with local
interactions.
From a simple modification for systems with a sharp light-cone:

S
(A)
n (t) = seqn min(|A|, 2t)



Approximation for Renyi and von Neumann entropies

We can further show that[(
Z(A)
n

)m]
eq app

−
(
Z(A)
n,P

)m
�
(
Z(A)
n,P

)m
, m = 2, 3, ...

Through analytic continuation, we get the equilibrium approximation
for the Renyi entropies,

[S
(A)
n ]eq app = − 1

n − 1
lim
m→0

∂[(Z(A)
n )m]eq app

∂m

≈ − 1

n − 1
lim
m→0

∂(Z(A)
n,P )m

∂m
= − 1

n − 1
log(Z(A)

n,P ) . (1)

Similarly, for the von Neumann entropy:

[S
(A)
1 ]eq app = − lim

n→1

∂Z(A)
n,P

∂n
.


